11/17/00

UNITX

William Stallings

This document is an extract from

Operating Systems: Internals and Design Principles, Fourth Edition
Prentice Hall, 2000, ISBN 0-13-031999-6

It isavailable at WilliamStallings.com/O34e.html

Copyright 2001 William Stallings

11/17/00

2.6 TRADITIONAL UNIX SYSTEMS.......ooi ettt 4
[TS (0] YOS 4

1S o] o (o o OSSPSR 4

2.7 MODERN UNIX SYSTEMSottt 6
SysSteM V REEESE 4 (SVRA) ...ttt 6
0] = T 1220 G 6
BABSD ...t e bbbt ettt bt nre b nneas 6

N OSSPSR 6

[TS (0] YU 6

1Yo L1 ot U = S 7

3.4 UNIX SVR4 PROCESS MANAGEMENTootiiiirieierie sttt 9
PrOCESS SEALES.......eeieieiicteee ettt st e s e e e s b e e e san e e e sss e e s nnneesneeeens 9
010 = Y DTS o] 9
0701 @0 o 10

4.5 SOLARISTHREAD AND SMP MANAGEMENTcooiiiirerenereree e 12
Multithreaded ArChItECIUIE..........ccueiieeeeceece e 12

1Yo (7= £ o o 12
PrOCESS SITUCLUIE.......co ettt sbe e e naree e 13

QI 1= o = ol 11 o o 13
INEETUPLS @S TRMEAAS.cveeeeceee e es 14

4.6 LINUX PROCESS AND THREAD MANAGEMENT ... 16
LINUX PrOCESSES......ecueeitieiesieesie et seesteestesseesseessessessseessesseesseesseaseasseessesnsssseessesssnssennsens 16

T DT I 1= 0 LSO 16

6.7 UNIX CONCURRENCY MECHANISMS......ccoiiiieririeieiese et 17
0= 17
IMLESSAOES ...ttt e et ettt ettt e st e st e st e sb e e e bt e e bt e e s abe e e sabe e e e b e e e e ane e e nne e e nneennee s 17

S T2 T o Y= 0 00 Y2 17
SEMBPNOTES........eeieeeieee ettt se ettt e s te e s e te et e ese e seeseesseeseeneesseenteeneenneennennneas 17

S 0] = USSR 18

6.8 SOLARISTHREAD SYNCHRONIZATION PRIMITIVES........ccoooiiiieienene e 19
Mutual EXCIUSION LOCK........cccuiiieiieiecie ettt e e e 19
SEMBPNOTES. ... eeieeeieeie ettt ee sttt et te e sae e te et e sseesseeseesseeseeneeeseesteeneesneensenneeas 19
REAAEIS/WIITEN LOCKeiieieiecieciee ettt 19
CoNditioN VariablES......cc.eeieeiece ettt enne e 20

8.3 UNIX AND SOLARISMEMORY MANAGEMENTccooiiririnirireee e 21
2o L] 10 TS (= 0 PR 21

Dala SITUCLUIES......coeiiiee ettt 21

Page REPIBCEMENTccee et esneene s 21

Kernel Memory ATIOCALONoiieieeee ettt sreeae e 22

8.4 LINUX MEMORY MANAGEMENT ..ottt s 24
LiNUX VUGl MEMOTYocveeiece ettt e sttt s sneene e sneenseenee e 24

Virtual Memory AdAreSSINGcoveveeeereee e see e 24

[0 T 1 Vo o= (o] o 1RSSR 24

Page Replacement AlgOrithmcoveiiieieeecece e 24

Kernel Memory AlIOCALTION.........ccueieeieceee et 24

9.3 TRADITIONAL UNIX SCHEDULING........cectiiririeieriesiesie et 26
10.3 LINUX SCHEDULING......ccctiiitiiieieieriesie ettt sa s sae s 28
10.4 UNIX SVRA SCHEDULINGcooiiiiiiierteste st 29
11.8 UNIX SVRA /Ot bbbttt bbb 30
2T o o S 30
CharaCter QUEUE...........eecueeeciee it eetee et eetee e et e st et e e sare e beesaseesbeesaeeebeesaseeseesaneereennns 30

(0l o101 = £ o 1 /L T 31

N G 1=V -SSR 31

11/17/00

12.7 UNIX FILE MANAGEMENTooiiiieese ettt 32
70T [T 32
L LY A A oo 1 o o USSR 32
13.6 SUN CLUSTER ...ttt sttt bbb naeens 34
Object and CommuNICation SUPPOIT........c.eeeererieeiieseeeeseeseeeeseesse e sreeseeseesseenseens 34
ProCcess ManagemMENT...........couiiiiiiiie it san e nan e 34
AN Y0 o OSSR 34
(€1 [o] 7= I T TSR Y (o O 35
13.7 BEOWULF AND LINUX CLUSTERS.......ccooot e 36
BEOWUIT FEAIUIES.......c.eeieee ettt ettt st e e sneenneenee e 36
BEOWUIT SOftWEIEc.veceeeceeee ettt n e e 36

11/17/00

2.6 TRADITIONAL UNIX SYSTEMS

History

The history of UNIX isan oft-told tale and will not be repeated in great detail here. Instead, a
brief summary is provided; highlights are depicted in Figure 2.14, which is based on afigurein
[SALU94] 2

UNIX was initially developed at Bell Labs and became operational on a PDP-7 in 1970.
Some of the people involved at Bell Labs had aso participated in the time-sharing work being
done at MIT's Project MAC. That project led to the development of first CTSS and then Multics.
Although it is common to say that UNIX is a scaled-down version of Multics, the devel opers of
UNIX actually claimed to be more influenced by CTSS[RITC78b]. Nevertheless, UNIX
incorporated many ideas from Multics.

Work on UNIX at Bell Labs, and later elsewhere, produced a series of versions of UNIX.
The first notable milestone was porting the UNIX system from the PDP-7 to the PDP-11. This
was the first hint that UNIX would be an operating system for all computers. The next important
milestone was the rewriting of UNIX in the programming language C. This was an unheard-of
strategy at the time. It was generally felt that something as complex as an operating system,
which must deal with time-critical events, had to be written exclusively in assembly language.
The C implementation demonstrated the advantages of using a high-level language for most if
not all of the system code. Today, virtually al UNIX implementations are written in C.

These early versions of UNIX were quite popular within Bell Labs. In 1974, the UNIX
system was described in atechnical journal for the first time [RITC74]. This spurred great
interest in the system. Licenses for UNIX were provided to commercial institutions as well as
universities. The first widely available version outside Bell Labswas Version 6, in 1976. The
follow-on Version 7, released in 1978, is the ancestor of most modern UNIX systems. The most
important of the non-AT& T systems to be developed was done at the University of California at
Berkeley, called UNIX BSD, running first on PDP and then VAX machines. AT& T continued to
develop and refine the system. By 1982, Bell Labs had combined several AT& T variants of
UNIX into asingle system, marketed commercially as UNIX System I11. A number of features
were later added to the operating system to produce UNIX System V.

Description

Figure 2.15 provides a general description of the UNIX architecture. The underlying hardware is
surrounded by the operating-system software. The operating system is often called the system
kernel, or ssimply the kernel, to emphasize itsisolation from the user and applications. This
portion of UNIX iswhat we will be concerned with in our use of UNIX as an examplein this
book. However, UNIX comes equipped with a number of user services and interfaces that are
considered part of the system. These can be grouped into the shell, other interface software, and
the components of the C compiler (compiler, assembler, loader). The layer outside of this
consists of user applications and the user interface to the C compiler.

A closer look at the kernel is provided in Figure 2.16. User programs can invoke operating-
system services either directly or through library programs. The system call interfaceis the
boundary with the user and allows higher-level software to gain access to specific kernel
functions. At the other end, the operating system contains primitive routines that interact directly
with the hardware. Between these two interfaces, the system is divided into two main parts, one
concerned with process control and the other concerned with file management and 1/0. The
process control subsystem is responsible for memory management, the scheduling and
dispatching of processes, and the synchronization and interprocess communication of processes.
The file system exchanges data between memory and external devices either as a stream of

1 A more complete family treeis presented in [MCKU96].

-4-

11/17/00

charactersor in blocks. To achieve this, avariety of device drivers are used. For block-oriented
transfers, adisk cache approach is used: a system buffer in main memory is interposed between
the user address space and the external device.

The description in this subsection has dealt with what might be termed traditional UNIX
systems; [VAHA96] uses thisterm to refer to System V Release 3 (SVR3), 4.3BSD, and earlier
versions. The following general statements may be made about atraditional UNIX system. Itis
designed to run on asingle processor and lacks the ability to protect its data structures from
concurrent access by multiple processors. Its kernel is not very versatile, supporting asingle type
of file system, process scheduling policy, and executable file format. The traditional UNIX
kernel is not designed to be extensible and has few facilities for code reuse. The result isthat, as
new features were added to the various UNIX versions, much new code had to be added,
yielding a bloated and unmodular kernel.

V6
Xenix <« » BSD
v
\'%/ /
v
PWB 2BSD
v
v 32V . \‘ 3BSD
PWB2
v
Xenix2 SIII
2.10BSD v
l 4BSD
v
V3 2.11BSD v
4.2BSD
SYSV v
V10
v
sco/ v
v
V.2 v 4.3BSD —
Plan9
V3 .
" Ultrix 4.4BSD

V.32 AIX SunOS

Mach

o /

i: Solaris OSFI

LINUX «

Figure 2.14 UNIX History

UNIX Commands
and Libraries

System Call
Interface

Kernel

Hardware

User-written
Applications

Figure 2.15 General UNIX Architecture

User Programs

A
Trap
~~~~~~~~~~~~~~ Libraries
User Level .| el
Kernel Level
\ 4
System Call Interface
7y 7'y
A y
Inter-process
communication
File Subsystem p
«—> rocess
Control Scheduler
2 7y Subsystem
A
M
Buffer Cache eImory
- management
v \ 4

character block

Device Drivers

A

y

Hardware Control

Kernel Level

Hardware Level

Hardware

Figure 2.16 Traditional UNIX Kernel [BACHS86]



11/17/00

2.7 MODERN UNIX SYSTEMS

As UNIX evolved, the number of different implementations proliferated, each providing some
useful features. There was a heed to produce a new implementation that unified many of the
important innovations, added other modern OS-design features, and produced a more modular
architecture. Typical of the modern UNIX kernel isthe architecture depicted in Figure 2.17.
Thereisasmall core of facilities, written in amodular fashion, that provide functions and
services needed by a number of OS processes. Each of the outer circles represents functions and
an interface that may be implemented in avariety of ways.

We now turn to some examples of modern UNIX systems.

System V Release 4 (SVR4)

SVR4, developed jointly by AT& T and Sun Microsystems, combines features from SVRS,
4.3BSD, Microsoft Xenix System V, and SunOS. It was almost atotal rewrite of the System V
kernel and produced aclean, if complex, implementation. New features in the release include
real-time processing support, process scheduling classes, dynamically allocated data structures,
virtual memory management, virtual file system, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers and was devel oped
to provide a uniform platform for commercial UNIX deployment. It has succeeded in this
objective and is perhaps the most important UNIX variant extant. It incorporates most of the
important features ever developed on any UNIX system, and does so in an integrated,
commercialy viable fashion. SVR4 is running on machines ranging from 32-bit microprocessors
up to supercomputers and is one of the most important operating systems ever developed. Many
of the UNIX examplesin thisbook are from SVRA4.

Solaris 2.x

Solarisis Sun's SVR4-based UNIX release, with the |atest version being 2.8. The version 2
Solaris implementations provide all of the features of SVR4 plus a number of more advanced
features, such as afully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solarisis the most widely used and most successful
commercial UNIX implementation. For some OS features, Solaris provides the UNIX examples
in this book.

4.4BSD
The Berkeley Software Distribution BSD series of UNIX releases have played akey rolein the
development of OS design theory. 4.xBSD iswidely used in academic installations and has
served as the basis of anumber of commercial UNIX products. It is probably safe to say that
BSD isresponsible for much of the popularity of UNIX and that most enhancements to UNIX
first appeared in BSD versions.

4.4BSD isthe final version of BSD to be released by Berkeley, with the design and
implementation organization subsequently dissolved. It isamajor upgrade to 4.3BSD and
includes a new virtual memory system, changes in the kernel structure, and along list of other
feature enhancements.

L inux

History

Linux started out asa UNIX variant for the IBM PC architecture. Theinitial version was
written by Linus Torvalds, a Finnish student of computer science. Torvalds posted an early
version of Linux on the Internet in 1991. Since then, a number of people, collaborating over the
Internet, have contributed to the development of Linux, all under the control of Torvalds.
Because Linux is free and the source code is available, it became an early alternative to other
UNIX workstations, such as those offered by Sun Microsystems, Digital Equipment Corp (now

-6-




11/17/00

Compaq), and Silicon Graphics. Today, Linux isafull-featured UNIX system that runs on all of
these platforms and more.

Key to the success of Linux has been its character as a free package available under the
auspices of the Free Software Foundation (FSF). FSF's god is stable, platform-independent
software that is free, high quality, and embraced by the user community. FSF's GNU project
provides tools for software devel opers, and the GNU Public License (GPL) is the FSF seal of
approval. Torvalds used GNU tools in developing his kernel, which he then released under the
GPL. Thus, the Linux distributions that you see today are the product of FSF's GNU project,
Torvald'sindividual effort, and many collaborators all over the world.

In addition to its use by many individual programmers, Linux has now made significant
penetration into the corporate world [MANCOQ]. Thisis not primarily because of the free
software, but because of the quality of the Linux kernel. Many talented programmers have
contributed to the current version, resulting in atechnically impressive product. Moreover, Linux
is highly modular and easily configured. This makes it easy to squeeze optimal performance
from avariety of hardware platforms. Plus, with the source code available, vendors can tweak
applications and utilities to meet specific requirements. Throughout this book, we will provide
details of Linux kernel internals.

Modular Structure

Most UNIX kernels are monolithic. Recall that a monolithic kernel is one that includes
virtually all of the operating-system functionality in one large block of code that runs asasingle
process with a single address space. All the functional components of the kernel have accessto
al of itsinternal data structures and routines. If changes are made to any portion of atypical
monolithic operating system, all the modules and routines must be relinked and reinstalled and
the system rebooted before the changes can take effect. As aresult, any modification, such as
adding anew device driver or file system function, is difficult. This problem is especially acute
for Linux, for which development is global and done by aloosely associated group of
independent programmers.

To address this problem, Linux is organized as a collection of relatively independent blocks
referred to asloadable modules [GOY E99]. The Linux loadable modules have two important
characteristics:

- Dynamic linking: A kernel module can be loaded and linked into the kernel while the
kernel is already in memory and executing. A module can a so be unlinked and removed
from memory at any time.

- Stackable modules: The modules are arranged in a hierarchy. Individual modules server as
libraries when they are referenced by client modules higher up in the hierarchy and as
clients when they reference modules further down.

Dynamic linking [FRAN97] eases the task of configuration and saves kernel memory. In
Linux, auser program or user can explicitly load and unload kernel modules using thei nsnod
and r mod commands. The kernel itself monitors the need for particular functions and can load
and unload modules as needed. With stackable modules, dependencies between modules can be
defined. This has two benefits:

1. Code common to a set of similar modules (e.g., drivers for similar hardware) can be
moved into a single module, reducing replication.

2. Thekernel can make sure that needed modules are present, refraining from unloading a
module on which other running modules depend, and loading any addition required
modules when a new module is loaded.

Figure 2.18 is an example that illustrates the structures used by Linux to manage modules.
The figure shows the list of kernel modules after only two modules have been loaded: FAT and



11/17/00

VFAT. Each module is defined by two tables, the module table and the symbol table. The
module table includes the following el ements:

- next: Pointer to the following module. All modules are organized into alinked list. Thelist
begins with a pseudomodule (not shown in Figure 2.18).

- ref: List of modules that use this module.

- symtab: Pointer to this module's symbol table.

- name: Module name.

- size: Module size in memory pages.

- addr: Starting address of module.

- state: Current state of module.

- *cleanup(): Pointsto routine launched at module unloading.

The symbol table defines those symbols controlled by this module that are used el sewhere.
It includes the following elements:

- size: Total table size.

- n_symbols. Number of symbols.

- n_refs: Number of references.

- symbols. Table of symbols.

- references: List of modules dependent on this module.

Figure 2.18 shows that the VFAT module was |oaded after the FAT module and that the
VFAT module is dependent on the FAT module.



S3ssadoad
Surreys-own

SAd

sJss

Sdd

[96VHVA] PUIdY XIN( WIBPOJA L°T NS

JIALIP
yI0M)U

JOALIP
i

S3ssado0ad

WIISAS JIALIp 3de)

yNMS
9D1AJP
Yoo[q

yI0MdUIeIy
JI[MPayds

JIALIP YSIP

sanIe ]
uowuo))

sgurddew
snowiAuoue

}I0MIWRIJ
AJourdur
[en}arA

ddeJIdUI
SJA/opOUA

sgurddew
IJIAIP

sgurddew a1y
SAN
yoyims
J9Xd

IE) jno-e

JJoo



11/17/00

3.4 UNIX SVR4 PROCESS MANAGEMENT

UNIX System V makes use of a simple but powerful process facility that is highly visible to the
user. UNIX follows the model of Figure 3.14b, in which most of the operating system executes
within the environment of a user process. Thus, two modes, user and kernel, are required. UNIX
uses two categories of processes. system processes and user processes. System processes runin
kernel mode and execute operating system code to perform administrative and housekeeping
functions, such as allocation of memory and process swapping. User processes operate in user
mode to execute user programs and utilities and in kernel mode to execute instructions belong to
the kernel. A user process enters kernel mode by issuing a system call, when an exception (fault)
is generated or when an interrupt occurs.

Process States

A total of nine process states are recognized by the UNIX operating system; these are listed in
Table 3.9 and a state transition diagram is shown in Figure 3.16 (based on figure in [BACH86]).
Thisfigureis similar to Figure 3.7, with the two UNIX sleeping states corresponding to the two
blocked states. The differences can be summarized quickly:

- UNIX employs two Running states to indicate whether the process is executing in user
mode or kernel mode.

- A distinction is made between the two states: (Ready to Run, in Memory) and (Preempted).
These are essentially the same state, asindicated by the dotted line joining them. The
distinction is made to emphasi ze the way in which the preempted state is entered. When a
processis running in kernel mode (as a result of a supervisor call, clock interrupt, or 1/0O
interrupt), there will come atime when the kernel has completed its work and is ready to
return control to the user program. At this point, the kernel may decide to preempt the
current process in favor of one that is ready and of higher priority. In that case, the current
process moves to the preempted state. However, for purposes of dispatching, those
processes in the preempted state and those in the Ready to Run, in Memory state form one
queue.

Preemption can only occur when a process is about to move from kernel mode to user
mode. While a processis running in kernel mode, it may not be preempted. This makes UNIX
unsuitable for real-time processing. A discussion of the requirements for real-time processing is
provided in Chapter 10.

Two processes are unique in UNIX. Process 0 isa specia process that is created when the
system boots; in effect, it is predefined as a data structure loaded at boot time. It is the swapper
process. In addition, process 0 spawns process 1, referred to as the init process; al other
processes in the system have process 1 as an ancestor. When a new interactive user logs onto the
system, it isprocess 1 that creates a user process for that user. Subsequently, the user process can
create child processes in a branching tree, so that any particular application can consist of a
number of related processes.

Process Description

A processin UNIX isarather complex set of data structures that provide the operating system
with al of the information necessary to manage and dispatch processes. Table 3.10 summarizes
the elements of the process image, which are organized into three parts: user-level context,
register context, and system-level context.

Theuser-level context contains the basic elements of a user's program and can be
generated directly from a compiled object file. The user's program is separated into text and data
areas, the text areais read-only and is intended to hold the program'sinstructions. While the
process is executing, the processor uses the user stack areafor procedure calls and returns and

-9




11/17/00

parameter passing. The shared memory areais a data area that is shared with other processes.
Thereis only one physical copy of ashared memory area, but, by the use of virtual memory, it
appears to each sharing process that the shared memory region isin its address space. When a
process is hot running, the processor status information is stored in the register context area.

The system-level context contains the remaining information that the operating system
needs to manage the process. It consists of a static part, which isfixed in size and stays with a
process throughout its lifetime, and a dynamic part, which varies in size through the life of the
process. One element of the static part is the process table entry. Thisis actually part of the
process table maintained by the operating system, with one entry per process. The process table
entry contains process control information that is accessible to the kernel at al times; hence, ina
virtual memory system, all process table entries are maintained in main memory. Table 3.11 lists
the contents of a process table entry. The user area, or U area, contains additional process control
information that is needed by the kernel when it is executing in the context of this process; it is
also used when paging processes to and from memory. Table 3.12 shows the contents of this
table.

The distinction between the process table entry and the U area reflects the fact that the
UNIX kernel aways executes in the context of some process. Much of the time, the kernel will
be dealing with the concerns of that process. However, some of the time, such as when the kernel
is performing a scheduling algorithm preparatory to dispatching another process, it will need
access to information about other processes.

The third static portion of the system-level context isthe per process region table, whichis
used by the memory management system. Finally, the kernel stack is the dynamic portion of the
system-level context. This stack is used when the process is executing in kernel mode and
contains the information that must be saved and restored as procedure calls and interrupts occur.

Process Control
Process creation in UNIX is made by means of the kernel system call, fork( ). When a process
issues a fork request, the operating system performs the following functions [BACHS86]:

It allocates adlot in the process table for the new process.

It assigns a unique process ID to the child process.

It makes a copy of the process image of the parent, with the exception of any shared
memory.

It increments counters for any files owned by the parent, to reflect that an additional
process now also owns those files.

It assigns the child process to a Ready to Run state.

It returns the ID number of the child to the parent process, and a 0 value to the child
process.

oo A~ wbhE

All of thiswork is accomplished in kernel mode in the parent process. When the kernel has
completed these functionsit can do one of the following, as part of the dispatcher routine:

1. Stay inthe parent process. Control returns to user mode at the point of the fork call of the
parent.

2. Transfer control to the child process. The child process begins executing at the same
point in the code as the parent, namely at the return from the fork call.

3. Transfer control to another process. Both parent and child are left in the Ready to Run
state.

It is perhaps difficult to visualize this method of process creation because both parent and

child are executing the same passage of code. The difference is this: when the return from the
fork occurs, the return parameter is tested. If the value is zero, then thisis the child process, and

-10-



11/17/00

a branch can be executed to the appropriate user program to continue execution. If the valueis
nonzero, then thisis the parent process, and the main line of execution can continue.

-11-



Table3.9 UNIX Process States

User Running
Kernel Running
Ready to Run, in Memory

Adleep in Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

Zombie

Executing in user mode.
Executing in kernel mode.
Ready to run as soon as the kernel schedulesiit.

Unable to execute until an event occurs; processisin man
memory (ablocked state).

Processis ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Processis newly created and not yet ready to run.

Process no longer exists, but it leaves arecord for its parent
process to collect.




Table3.10 UNIX ProcessImage

Process Text
Process Data
User Stack

Shared Memory

User-L evel Context

Executable machine instructions of the program

Data accessible by the program of this process

Contains the arguments, local variables, and pointers for functions
executing in user mode

Memory shared with other processes, used for interprocess
communication

Program Counter
Processor Status Register
Stack Pointer

General-Purpose Registers

Register Context

Address of next instruction to be executed; may be in kernel or
user memory space of this process

Contains the hardware status at the time of preemption; contents
and format are hardware dependent

Points to the top of the kernel or user stack, depending on the mode
of operation at the time or preemption

Hardware dependent

Process Table Entry
U (user) Area

Per Process Region Table

Kerne Stack

System-L evel Context

Defines state of a process; thisinformation is always accessible to
the operating system

Process control information that needs to be accessed only in the
context of the process

Defines the mapping from virtual to physical addresses; aso
contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute
Contains the stack frame of kernel procedures as the process
executes in kernel mode




Table 3.11 UNIX Process Table Entry

Process Status
Pointers

Process Size

User ldentifiers

Process |dentifiers

Event Descriptor

Priority
Signa

Timers

P link

Memory Status

Current state of process.
To U area and process memory area (text, data, stack).

Enables the operating system to know how much space to allocate
the process.

Thereal user ID identifies the user who is responsible for the
running process. The effective user | D may be used by a process
to gain temporary privileges associated with a particular program;
while that program is being executed as part of the process, the
process operates with the effective user ID.

ID of this process; ID of parent process. These are set up when the
process enters the Created state during the fork system call.

Valid when aprocessisin a sleeping state; when the event occurs,
the process istransferred to a ready-to-run state.

Used for process scheduling.
Enumerates signals sent to a process but not yet handled.

Include process execution time, kernel resource utilization, and
user-set timer used to send alarm signal to a process.

Pointer to the next link in the ready queue (valid if processis ready
to execute).

Indicates whether processimage isin main memory or swapped
out. If it isin memory, this field also indicates whether it may be
swapped out or is temporarily locked into main memory.




Table3.12 UNIX U Area

Process Table Pointer
User ldentifiers

Timers

Signal-Handler Array

Control Termina
Error Field
Return Value

I/O Parameters

File Parameters

User File Descriptor Table
Limit Fields

Permission Modes Fields

Indicates entry that corresponds to the U area.
Real and effective user IDs. Used to determine user privileges.

Record time that the process (and its descendants) spent executing
in user mode and in kernel mode.

For each type of signal defined in the system, indicates how the
process will react to receipt of that signal (exit, ignore, execute
specified user function).

Indicates login terminal for this process, if one exists.

Records errors encountered during a system call.

Contains the result of system calls.

Describe the amount of data to transfer, the address of the source
(or target) dataarray in user space, and file offsets for 1/0.

Current directory and current root describe the file system
environment of the process.

Records the files the process has open.
Restrict the size of the process and the size of afile it can write.

Mask mode settings on files the process creates.




WeISeI(] UONISUBL], LIS SSI0IJ XIN 9]°€ 2In3L]

paddems < AIOURdA -
‘dagIs o dems ur dodsy i
JIXd winjau jdnaxdyur
3
dnayem dnayem daoys ydnazayur
Suruunyy
v v [PUIY ydnaadyur
‘[18d WI)SAS
ur dems ssadoad
paddemg : p ATOWIA Uy
JMPaAYISAI
uny 0} %@ﬂu&A unyj o) Apeay uInjax
o dems
h N yduwddad PG,
S 13S0
s N
~
M ~
(ATuo woysAs Surddems) Krowdw RN . v J19sn 0)
AJIowdu Yy3noud jou y3noud N LIALLEED
pardudarg
paear)

10§



11/17/00

45 SOLARISTHREAD AND SMP MANAGEMENT

Solaris implements an unusual multilevel thread support designed to provide considerable
flexibility in exploiting processor resources.

Multithreaded Architecture
Solaris makes use of four separate thread-related concepts:

- Process: Thisisthe normal UNIX process and includes the user's address space, stack, and
process control block.

- User-level threads: Implemented through a threads library in the address space of a
process, these are invisible to the operating system. User-level threads (UL Ts)2 are the
interface for application parallelism.

- Lightweight processes: A lightweight process (LWP) can be viewed as a mapping
between UL Ts and kernel threads. Each L WP supports one or more UL Ts and maps to one
kernel thread. LWPs are scheduled by the kernel independently and may execute in parallel
on multiprocessors.

- Kernel threads. These are the fundamental entities that can be scheduled and dispatched
to run on one of the system processors.

Figure 4.15 illustrates the relationship among these four entities. Note that there is aways
exactly one kernel thread for each LWP. An LWP is visible within a process to the application.
Thus, LWP data structures exist within their respective process address space. At the sametime,
each LWP is bound to a single dispatchable kernel thread, and the data structure for that kernel
thread is maintained within the kernel's address space.

In our example, process 1 consists of asingle ULT bound to asingle LWP. Thus, thereisa
single thread of execution, corresponding to atraditional UNIX process. When concurrency is
not required within a single process, an application uses this process structure. Process 2
corresponds to apure ULT strategy. All of the ULTs are supported by a single kernel thread, and
therefore only one UL T can execute at atime. This structure is useful for an application that can
best be programmed in away that expresses concurrency but for which it is not necessary to
have parallel execution of multiple threads. Process 3 shows multiple threads multiplexed on a
lesser number of LWPs. In general, Solaris allows applications to multiplex ULTs on alesser or
egual number of LWPs. This enables the application to specify the degree of parallelism at the
kernel level that will support this process. Process 4 has its threads permanently bound to LWPs
in a one-to-one mapping. This structure makes the kernel-level parallelism fully visible to the
application. It isuseful if threadswill typically or frequently be suspended in a blocking fashion.
Process 5 shows both a mapping of multiple ULTs onto multiple LWPs and the binding of a
ULT toaLWP. In addition, one LWP is bound to a particular processor.

Not shown in the figure is the presence of kernel threads that are not associated with LWPs.
The kernel creates, runs, and destroys these kernel threads to execute specific system functions.
The use of kernel threads rather than kernel processes to implement system functions reduces the
overhead of switching within the kernel (from a process switch to athread switch).

Motivation

The combination of user-level and kernel-level threads gives the application programmer the
opportunity to exploit concurrency in away that is most efficient and most appropriate to agiven
application.

2 Again, theacronym ULT ismine and is not found in the Solaris literature.

-12-




11/17/00

Some programs have logical parallelism that can be exploited to simplify and structure the
code but do not need hardware parallelism. For example, an application that employs multiple
windows, only one of which is active at atime, could with advantage be implemented as a set of
ULTson asingle LWP. The advantage of restricting such applicationsto UL Ts s efficiency.
UL Ts may be created, destroyed, blocked, activated, etc. without involving the kernel. If each
ULT were known to the kernel, the kernel would have to allocate kernel data structures for each
one and perform thread switching. As we have seen (Table 4.1), kernel-level thread switching is
more expensive than user-level thread switching.

If an application involves threads that may block, such as when performing I/O, then
having multiple LWPs to support an equal or greater number of ULTsis attractive. Neither the
application nor the threads library need perform contortions to allow other threads within the
same process to execute. Instead, if one thread in a process blocks, other threads within the
process may run on the remaining LWPs.

Mapping ULTs one-to-oneto LWPs s effective for some applications. For example, a
parallel array computation could divide the rows of its arrays among different threads. If thereis
exactly one ULT per LWP, then no thread switching is required for the computation to proceed.

A mixture of threads that are permanently bound to L WPs and unbound threads (multiple
threads sharing multiple LWPs) is appropriate for some applications. For example, areal-time
application may want some threads to have systemwide priority and real-time scheduling, while
other threads perform background functions and can share one or a small pool of LWPs.

Process Structure
Figure 4.16 compares, in general terms, the process structure of atraditional UNIX system with
that of Solaris. On atypical UNIX implementation, the process structure includes the processor
ID; the user IDs; asignal dispatch table, which the kernel uses to decide what to do when
sending a signal to a process, file descriptors, which describe the state of filesin use by this
process; amemory map, which defines the address space for this process; and a processor state
structure, which includes the kernel stack for this process. Solaris retains this basic structure but
replaces the processor state block with alist of structures containing one data block for each
LWP.

The LWP data structure includes the following elements:

- An LWP identifier

- The priority of this LWP and hence the kernel thread that supports it

- A signal mask that tells the kernel which signals will be accepted

- Saved values of user-level registers (when the LWP is not running)

- The kernel stack for this LWP, which includes system call arguments, results, and error
codes for each call level

- Resource usage and profiling data

- Pointer to the corresponding kernel thread

- Pointer to the process structure

Thread Execution

Figure 4.17 shows asimplified view of both ULT and LWP execution states. The execution of
user-level threads is managed by the threads library. Let usfirst consider unbound threads, that
is, threads that share a number of LWPs. An unbound thread can be in one of four states:
runnable, active, sleeping, or stopped. A ULT in the active state is currently assigned to aLWP
and executes while the underlying kernel thread executes. A number of events may cause the
ULT to leave the active state. Let us consider an active ULT called T1. The following events
may occur:

- Synchronization: T1 invokes one of the concurrency primitives discussed in Chapter 5 to
coordinate its activity with other threads and to enforce mutual exclusion. T1isplaced in

-13-



11/17/00

the sleeping state. When the synchronization condition is met, T1 is moved to the runnable
State.

- Suspension: Any thread (including T1) may cause T1 to be suspended and placed in the
stopped state. T1 remainsin that state until another thread issues a continue request, which
moves it to the runnabl e state.

- Preemption: An active thread (T1 or some other thread) does something that causes
another thread (T2) of higher priority to become runnable. If T1 isthe lowest-priority
active thread, it is preempted and moved to the runnable state, and T2 is assigned to the
LWP made available.

- Yielding: If T1 executesthet hr _yi el d( ) library command, the threads scheduler in
the library will look to seeif there is another runnable thread (T2) of the same priority. If
so, T1is placed in the runnable state and T2 is assigned to the LWP made available. If not,
T1 continuesto run.

In al of the preceding cases, when T1 is moved out of the active state, the threads library selects
another unbound thread in the runnable state and runs it on the newly available LWP.

Figure 4.17 aso shows the state diagram for an LWP. We can view this state diagram as a
detailed description of the ULT active state, because an unbound thread only has an LWP
assigned to it when it isin the Active state. The LWP state diagram is reasonably self-
explanatory. An active thread is only executing when its LWP isin the Running state. When an
active thread executes a blocking system call, the LWP enters the Blocked state. However, the
ULT remains bound to that LWP and, as far as the threads library is concerned, that ULT
remains active.

With bound threads, the relationship between ULT and LWP is dlightly different. For
example, if abound ULT moves to the Sleeping state awaiting a synchronization event, its LWP
must also stop running. Thisis accomplished by having the LWP block on akernel-level
synchronization variable.

Interruptsas Threads
Most operating systems contain two fundamental forms of asynchronous activity: processes and
interrupts. Processes (or threads) cooperate with each other and manage the use of shared data
structures by means of a variety of primitives that enforce mutual exclusion (only one process at
atime can execute certain code or access certain data) and that synchronize their execution.
Interrupts are synchronized by preventing their occurrence for a period of time. Solaris unifies
these two concepts into a single model, namely kernel threads and the mechanisms for
scheduling and executing kernel threads. To do this, interrupts are converted to kernel threads.

The motivation for converting interrupts to threads is to reduce overhead. Interrupt handlers
often manipul ate data shared by the rest of the kernel. Therefore, while akernel routine that
accesses such data is executing, interrupts must be blocked, even though most interrupts will not
affect that data. Typically, the way thisis doneisfor the routine to set the interrupt priority level
higher to block interrupts, and then lower the priority level after accessis completed. These
operations take time. The problem is magnified on a multiprocessor system. The kernel must
protect more objects and may need to block interrupts on all processors.

The solution in Solaris can be summarized as follows:

1. Solarisemploys a set of kernel threads to handle interrupts. As with any kernel thread, an
interrupt thread has its own identifier, priority, context, and stack.

2. Thekernel controls access to data structures and synchronizes among interrupt threads
using mutual exclusion primitives, of the type discussed in Chapter 5. That is, the normal
synchronization techniques for threads are used in handling interrupts.

3. Interrupt threads are assigned higher priorities than al other types of kernel threads.

-14-



11/17/00

When an interrupt occurs, it is delivered to a particular processor and the thread that was
executing on that processor is pinned. A pinned thread cannot move to another processor and its
context is preserved; it is simply suspended until the interrupt is processed. The processor then
begins executing an interrupt thread. There is a pool of deactivated interrupt threads available, so
that a new thread creation is not required. The interrupt thread then executes to handle the
interrupt. If the handler routine needs access to a data structure that is currently locked in some
fashion for use by another executing thread, the interrupt thread must wait for access to that data
structure. An interrupt thread can only be preempted by another interrupt thread of higher
priority.

Experience with Solarisinterrupt threads indicates that this approach provides superior
performance to the traditional interrupt-handling strategy [KLEI95].

-15-



drduwrexs] 2an399)1YdIy PIPeIYINNJA SLIB[0S ST°p 2InSL]

1088301 E 5590014 WBPMET (1) PEAIY) PAI[-PUIIY @ peaayp _Q%E%Dm
El El d| fa] |4 o

[PUIdY]

OX6 w m

®© OO

NN

T O Q‘Q D==(1 Q‘Q T e (T e

speaay],

TN I /N
R ERIEE I INEEIE

G SS90 p $S9001J € SS9001J 7 SS9201J I SSa%04]




[96IAMAT] SHIB[0S pue XIN(] [FUONIPELL, UI 2IM)ONIG 5301 9T f dInJ1]

MOVILS MOVILS
SJII)SISIY SJII)SISIY
MSEI [BUsIS MSEI [BUSIS
AJLIOLYJ AJLIOLYJ
A dMT —> A dMT

TdMT TdMT

9)e)S J0SSI0IJ
$103dLI2Sa(T d[Iq cee $103dLI2Sa(T J[Iq
MOVLS
[ S)SISoy |
U [FUS1S|
Ko
dejA L10wRIA dejA L10WwRIA
dqeL, yaedsi( [eusis dqeL, yaedsi( [eusis
ST 19N ST 198N
(] SS9201d (] SS9201d

3IN)OINIYG SSA0IJ SIIB[OS 2.INONIS $S33014 XIN



Stop User-Level Threads

Runnable
Continue A Wakeup
Preempt
Stop .
Stopped <= Sleeping
Dispatch
Stop Sleep
— Active -
Timeslice
or Preempt Running Stop
Dispatch WL
Runnable Stopped
Blocking
System
Call
Y Continue
Wakeup
Blocked Stop

Lightweight Processes

Figure 4.17 Solaris User-Level Thread and LWP States




11/17/00

4.6 LINUX PROCESSAND THREAD MANAGEMENT

L inux Processes

A process, or task, in Linux isrepresented by at ask st r uct datastructure. Linux maintains
at ask table, which isalinear vector of pointersto every t ask st ruct datastructure
currently defined. Thet ask_st ruct datastructure contains information in a number of
categories:

- State: The execution state of the process (executing, ready, suspended, stopped, zombie).
Thisis described subsequently.

- Scheduling infor mation: Information needed by Linux to schedule processes. A process
can be normal or real time and has a priority. Real-time processes are scheduled before
normal processes, and within each category, relative priorities can be used. A counter keeps
track of the amount of time a processis allowed to execute.

- Identifiers. Each process has a unigue process identifier and also has user and group
identifiers. A group identifier is used to assign resource access privileges to a group of user.

- Inter process communication: Linux supports the IPC mechanisms found in UNIX SVR4,
described in Chapter 6.

- Links: Each processincludes alink to its parent process, links to its siblings (processes
with the same parent), and links to al of its children.

- Timesand timers: Includes process creation time and the amount of processor time so far
consumed by the process. A process may also have associated one or more interval timers.
A process defines an interval timer by means of asystem call; asaresult asignal is sent to
the process when the timer expires. A timer may be single use or periodic.

- File system: Includes pointersto any files opened by this process.

- Virtual memory: Defines the virtual memory assigned to this process.

- Processor-specific context: The registers and stack information that constitute the context
of this process.

Figure 4.18 shows the execution states of a process. These are:

- Running: This state value corresponds to two states. A Running processis either executing
or it isready to execute.

- Interruptable: Thisisablocked state, in which the process is waiting for an event, such as
the end of an 1/O operation, the availability of aresource, or asignal from another process.

- Uninterruptable: Thisisanother blocked state. The difference between this and the
Interruptable state is that in an uninterruptable state, a process is waiting directly on
hardware conditions and therefore will not accept any signals.

- Stopped: The process has been halted, and can only resume by positive action from
another process. For example, a process that is being debugged can be put into the Stopped
State.

- Zombie: The process has been terminated but, for some reason, still must have its task
structure in the process table.

Linux Threads

A new processis created in Linux by copying the attributes of the current process. A new
process can be cloned so that it shares resources, such asfiles, signal handlers, and virtual
memory. When the two processes share the same virtual memory, they function as threads within
asingle process. However, no separate type of data structure is defined for athread. Thus, Linux
makes no distinction between athread and a process.

-16-




d1quIo7Z,

g

[PPOJAl PBIIY/SSI201J XnuI'] Q[P 3IN31

/

Sunndaxy

uoneuIuLId)

dqndnrrduy
d
dqndnrrdyuruny JuoAd
10
[eusgis
JUIAD
——-
Surmpayos Apedy
. ———
Ijels A
suruuny
[eusis [eugis

paddoys

uonesrd



11/17/00

6.7 UNIX CONCURRENCY MECHANISMS

UNIX provides avariety of mechanisms for interprocessor communication and synchronization.
Here, we look at the most important of these:

- Pipes

- Messages

- Shared memory
- Semaphores

- Signals

Pipes, messages, and shared memory provide a means of communicating data across processes,
whereas semaphores and signals are used to trigger actions by other processes.

Pipes

One of the most significant contributions of UNIX to the development of operating systemsis
the pipe. Inspired by the concept of coroutines [RITC84], apipeisacircular buffer alowing two
processes to communicate on the producer-consumer model. Thus, it isafirst-in-first-out queue,
written by one process and read by another.

When apipeis created, it is given afixed size in bytes. When a process attempts to write
into the pipe, the write request isimmediately executed if there is sufficient room; otherwise the
processis blocked. Similarly, areading processis blocked if it attempts to read more bytes than
are currently in the pipe; otherwise the read request is immediately executed. The operating
system enforces mutual exclusion: that is, only one process can access a pipe at atime.

There are two types of pipes: named and unnamed. Only related processes can share
unnamed pipes, while unrelated processes can share only named pipes.

M essages

A message isablock of text with an accompanying type. UNIX provides msgsnd and msgrcv
system calls for processes to engage in message passing. Associated with each processisa
message queue, which functions like a mailbox.

The message sender specifies the type of message with each message sent, and this can be
used as a selection criterion by the receiver. The receiver can either retrieve messagesin first-in-
first-out order or by type. A process will suspend when trying to send a message to afull queue.
A process will also suspend when trying to read from an empty queue. If a process attempts to
read a message of a certain type and fails because no message of that type is present, the process
IS not suspended.

Shared Memory

The fastest form of interprocess communication provided in UNIX is shared memory. Thisisa
common block of virtual memory shared by multiple processes. Processes read and write shared
memory using the same machine instructions they use to read and write other portions of their
virtual memory space. Permission is read-only or read-write for a process, determined on a per-
process basis. Mutual exclusion constraints are not part of the shared-memory facility but must
be provided by the processes using the shared memory.

Semaphores

The semaphore system callsin UNIX System V are a generalization of the wait and signal
primitives defined in Chapter 5, in that several operations can be done simultaneously and the
increment and decrement operations can be values greater than 1. The kernel does all of the
requested operations atomically; no other process may access the semaphore until all operations
are done.

-17-




11/17/00

A semaphore consists of the following elements:

- Current value of the semaphore

- Process ID of the last process to operate on the semaphore

- Number of processes waiting for the semaphore value to be greater than its current value
- Number of processes waiting for the semaphore value to be zero

Associated with the semaphore are queues of processes suspended on that semaphore.

Semaphores are actually created in sets, with a semaphore set consisting of one or more
semaphores. There is a semctl system call that allows al of the semaphore valuesin the set to be
set at the same time. In addition, there is a semop system call that takes as an argument allist of
semaphore operations, each defined in one of the semaphoresin a set. When this call is made, the
kernel performs the indicated operations one at a time. For each operation, the actual function is
specified by the value sem_op. The following are the possibilities.

- If sem_op is positive, the kernel increments the value of the semaphore and awakens all
processes waiting for the value of the semaphore to increase.

- If sem_opisO, the kernel checks the semaphore value. If 0, it continues with the other
operations on the list; otherwise, it increments the number of processes waiting for this
semaphore to be 0 and suspends the process on the event that the value of the semaphore
equals 0.

- If sem_op is negative and its absolute value is less than or equal to the semaphore value, the
kernel adds sem-op (a negative number) to the semaphore value. If theresult is 0, the
kernel awakens all processes waiting for the value of the semaphore to equal 0.

- If sem_op is negative and its absolute value is greater than the semaphore value, the kernel
suspends the process on the event that the value of the semaphore increases

This generalization of the semaphore provides considerable flexibility in performing
process synchronization and coordination.

Signals

A signdl is a software mechanism that informs a process of the occurrence of asynchronous
events. A signal is similar to a hardware interrupt but does not employ priorities. That is, all
signals are treated equally; signals that occur at the same time are presented to a process one at a
time, with no particular ordering.

Processes may send each other signals, or the kernel may send signalsinternally. A signal
isdelivered by updating afield in the process table for the process to which the signal is being
sent. Because each signal is maintained as a single bit, signals of a given type cannot be queued.
A signal is processed just after a process wakes up to run or whenever the processis preparing to
return from asystem call. A process may respond to asignal by performing some default action
(e.g., termination), executing asignal handler function, or ignoring the signal.

Table 6.2 lists signals defined for UNIX SVR4.

-18-



Table6.2 UNIX Signals

Value Name

Description

01

02
03

04
05

06
07
08
09
10
11

12
13
14

15
16
17
18
19

SIGHUP

SIGINT
SIGQUIT

SIGILL
SIGTRAP

SIGIOT
SIGEMT
SIGFPT
SIGKILL
SIGBUS
SIGSEGV

SIGSYS
SIGPIPE
SIGALARM

SIGTERM
SIGUSR1
SIGUSR2
SIGCLD
SIGPWR

Hang up; sent to process when kernel assumes that the
user of that processis doing no useful work

Interrupt

Quit; sent by user to induce halting of process and
production of core dump

[llegal instruction

Trace trap; triggers the execution of code for process
tracing

|OT instruction

EMT instruction
Floating-point exception
Kill; terminate process
Bus error

Segmentation violation; process attempts to access
location outside its virtual address space

Bad argument to system call
Write on a pipe that hasno readers attached to it

Alarm clock; issued when a process wishes to receive a
signal after a period of time

Software termination
User-defined signal 1
User-defined signal 2
Death of achild

Power failure




11/17/00

6.8 SOLARISTHREAD SYNCHRONIZATION PRIMITIVES

In addition to the concurrency mechanisms of UNIX SV R4, Solaris supports four thread
synchronization primitives:

- Mutual exclusion (mutex) locks

- Semaphores

- Multiple readers, single writer (readers/writer) locks
- Condition variables

Solaris implements these primitives within the kernel for kernel threads; they are al'so
provided in the threads library for user-level threads. Execution of a primitive creates a data
structure that contains parameters specified by the creating thread (Figure 6.13). Once a
synchronization object is created, there are essentially only two operations that can be
performed: enter (acquire, lock) and release (unlock). There are no mechanismsin the kernel or
the threads library to enforce mutual exclusion or to prevent deadlock. If athread attempts to
access a piece of data or code that is supposed to be protected but does not use the appropriate
synchronization primitive, then such access occurs. If athread locks an object and then failsto
unlock it, no kernel action is taken.

All of the synchronization primitives require the existence of a hardware instruction that
allows an object to be tested and set in one atomic operation, as discussed in Section 5.3.

Mutual Exclusion L ock
A mutex lock prevents more than one thread from proceeding when the lock is acquired. The
thread that locks the mutex must be the one that unlocksit. A thread attempts to acquire a mutex
lock by executing the mut ex_ent er primitive. If nut ex_ent er cannot set the lock (because
itisalready set by another thread), the blocking action depends on type-specific information
stored in the mutex object. The default blocking policy isaspin lock: A blocked thread polls the
status of the lock while executing in a spin wait loop. An interrupt-based blocking mechanismis
optional. In thislatter case, the mutex includes aturnstile id that identifies a queue of threads
slegping on this lock.

The primitives associated with a mutex lock are:

mut ex_enter () Acquires the lock, potentially blocking if it is already held
mut ex_exit() Releases the lock, potentially unblocking awaiter
mut ex_tryent er () Acquiresthelock if it isnot aready held

Themut ex_tryenter () primitive provides a nonblocking way of performing the mutual

exclusion function. This enables the programmer to use a busy-wait approach for user-level
threads, which avoids blocking the entire process because one thread is blocked.

Semaphores
Solaris provides classic counting semaphores, with the following primitives:

sema_p() Decrements the semaphore, potentially blocking the thread
sema_v() Increments the semaphore, potentially unblocking a waiting thread
sema_t ryp() Decrementsthe semaphore if blocking is not required

Again, thesema_t ryp() primitive permits busy waiting.

Reader s/Writer Lock

-19-




11/17/00

The readers/writer lock allows multiple threads to have simultaneous read-only access to an
object protected by the lock. It also allows asingle thread to access the object for writing at one
time, while excluding all readers. When the lock is acquired for writing it takes on the status of
write lock: all threads attempting access for reading or writing must wait. If one or more readers
have acquired the lock, its status is read lock. The primitives are:

rw_enter() Attempts to acquire alock as reader or writer

rw exit() Releases alock as reader or writer

rw tryenter() Acquiresthelock if blocking is not required

rw_downgrade() A thread that has acquired awritelock convertsit to aread lock.
Any waiting writer remains waiting until this thread rel eases the
lock. If there are no waiting writers, the primitive wakes up any
pending readers.

rw_tryupgrade() Attemptsto convertareader lock into awriter lock.

Condition Variables

A condition variable is used to wait until a particular condition is true. Condition variables must
be used in conjunction with a mutex lock. This implements a monitor of the typeillustrated in
Figure 5.22. The primitives are:

cv_wait() Blocks until the condition is signaled
cv_signal () Wakes up one of the threads blocked incv_wai t ()
cv_broadcast () Wakesupal of thethreadsblockedincv_wai t ()

cv_wai t () releasesthe associated mutex before blocking and reacquires it before
returning. Because reacquisition of the mutex may be blocked by other threads waiting for the
mutex, the condition that caused the wait must be retested. Thus, typical usageis asfollows:

mut ex_enter (&m

while (sone_condition) {
cv_wait(&cv, &nm;

mut ex_exit (& ;

This allows the condition to be a complex expression, because it is protected by the mutex.

-20-



SAIN)INI)S B)R(J UONBZIUOIYIUAS SLIB[OS €9 2In31]

d[qeLreA uonIpuo)) (p)

(539390 7) sadjrem

0] JANLIM/IIPeIY (9)

(S39320 ) JIUMO peAIY)

(s3s9nbaax 91IM Jo JdqUINU
10 13jurod dnsne)s)
(S39320 ) uorun

(S39390 7) SIdjrem

(33320 1) J20[M

droydewdg (q)

(39320 ) JUNOD

(S39390 7) SIdajrem

(39320 1) Yo0[M

(39300 ) AdAYL,

Moo XALNI (®)

(19yurod sdnspe)s a0
aaq[y 2d £y do|
‘p1 dmsuan) e L[qissod)

(19190 ) ojur IS adL)

(S39320 7) SIdjrem

(39320 T) 20]

(39300 ) AdAYL,

(S39320 ¢) JoUMO




11/17/00

8.3 UNIX AND SOLARISMEMORY MANAGEMENT

Because UNIX isintended to be machine independent, its memory-management scheme will
vary from one system to the next. Earlier versions of UNIX simply used variable partitioning
with no virtual memory scheme. Current implementations, including SVR4 and Solaris 2.x,
make use of paged virtual memory.

In SVR4 and Solaris, there are actually two separate memory-management schemes. The
paging system provides avirtual memory capability that allocates page frames in main memory
to processes and also allocates page frames to disk block buffers. Although thisis an effective
memory-management scheme for user processes and disk 1/0, a paged virtual memory schemeis
less suited to managing the memory allocation for the kernel. For thislatter purpose, akernel
memory allocator is used. We examine these two mechanismsin turn.

Paging System

Data Structures

For paged virtual memory, UNIX makes use of a number of data structures that, with minor
adjustment, are machine independent (Figure 8.22 and Table 8.5):

- Pagetable: Typically, there will be one page table per process, with one entry for each
page in virtual memory for that process.

- Disk block descriptor: Associated with each page of a processis an entry in this table that
describes the disk copy of the virtual page.

- Page frame data table: Describes each frame of real memory and isindexed by frame
number.

- Swap-use table: Thereis one swap-use table for each swap device, with one entry for each
page on the device.

Most of the fields defined in Table 8.5 are self-explanatory. A few warrant further
comment. The Agefield in the page table entry is an indication of how long it has been since a
program referenced this frame. However, the number of bits and the frequency of update of this
field are implementation dependent. Therefore, thereisno universal UNIX use of thisfield for
page replacement policy.

The Type of Storage field in the disk block descriptor is heeded for the following reason:
When an executable fileisfirst used to create a new process, only a portion of the program and
datafor that file may be loaded into real memory. Later, as page faults occur, new portions of the
program and data are loaded. It is only at the time of first loading that virtual memory pages are
created and assigned to locations on one of the devices to be used for swapping. At that time, the
operating system is told whether it needs to clear (set to 0) the locations in the page frame before
the first loading of ablock of the program or data.

Page Replacement

The page frame data table is used for page replacement. Several pointers are used to create
listswithin thistable. All of the available frames are linked together in alist of free frames
available for bringing in pages. When the number of available pages drops below a certain
threshold, the kernel will steal a number of pagesto compensate.

The page-replacement algorithm used in SVR4 is arefinement of the clock policy
algorithm (Figure 8.16) known as the two-handed clock algorithm (Figure 8.23). The algorithm
uses the reference bit in the page table entry for each page in memory that is eligible (not locked)
to be swapped out. Thisbit is set to 0 when the page is first brought in and set to 1 when the page
isreferenced for aread or write. One hand in the clock algorithm, the fronthand, sweeps through
the pages on the list of eligible pages and sets the reference bit to 0 on each page. Sometime
later, the backhand sweeps through the same list and checks the reference bit. If the bit is set to 1,

-21-




11/17/00

then that page has been referenced since the fronthand swept by; these frames are ignored. If the
bit is still set to O, then the page has not been referenced in the time interval between the visit by
fronthand and backhand; these pages are placed on alist to be paged out.

Two parameters determine the operation of the algorithm:

- Scanrate: Therate at which the two hands scan through the page list, in pages per second
- Handspread: The gap between fronthand and backhand

These two parameters have default values set at boot time based on the amount of physical
memory. The scanrate parameter can be altered to meet changing conditions. The parameter
varies linearly between the values slowscan and fastscan (set at configuration time) as the
amount of free memory varies between the values |otsfree and minfree. In other words, as the
amount of free memory shrinks, the clock hands move more rapidly to free up more pages. The
handspread parameter determines the gap between the fronthand and the backhand and therefore,
together with scanrate, determines the window of opportunity to use a page beforeit is swapped
out due to lack of use.

Kernel Memory Allocator

The kernel generates and destroys small tables and buffers frequently during the course of
execution, each of which requires dynamic memory allocation. [VAHA96] lists the following
examples:

- The pathname translation routing may allocate a buffer to copy a pathname from user
space.

- Theal I ocb() routine alocates STREAMS buffers of arbitrary size.

- Many UNIX implementations allocate zombie structures to retain exit status and resource
usage information about deceased processes.

- In SVR4 and Solaris, the kernel alocates many objects (such as proc structures, vnodes,
and file descriptor blocks) dynamically when needed.

Most of these blocks are significantly smaller than the typical machine page size, and therefore
the paging mechanism would be inefficient for dynamic kernel memory alocation. For SVR4, a
modification of the buddy system, described in Section 7.2, is used.

In buddy systems, the cost to allocate and free a block of memory is low compared to that
of best-fit or first-fit policies[KNUT97]. However, in the case of kernel memory management,
the alocation and free operations must be made as fast as possible. The drawback of the buddy
system is the time required to fragment and coal esce blocks.

Barkley and Lee at AT& T proposed a variation known as a lazy buddy system [BARK89],
and thisis the technique adopted for SV R4. The authors observed that UNIX often exhibits
steady-state behavior in kernel memory demand; that is, the amount of demand for blocks of a

particular size varies slowly intime. Therefore, if ablock of size 2 isreleased and is
immediately coalesced with its buddy into ablock of size 2'*1, the kernel may next request a

block of size 2', which may necessitate splitting the larger block again. To avoid this unnecessary
coalescing and splitting, the lazy buddy system defers coalescing until it seemslikely that itis
needed, and then coal esces as many blocks as possible.

The lazy buddy system uses the following parameters:

N, = current number of blocks of size 2
A, = current number of blocks of size 2! that are allocated (occupied).
G, = current number of blocks of size 2! that are globally free; these are blocks that are

eligible for coalescing; if the buddy of such ablock becomes globally free, then the

-22-



11/17/00

two blocks will be coalesced into aglobally free block of size 21, All free blocks
(holes) in the standard buddy system could be considered globally free.

L, = current number of blocks of size 2' that are locally free; these are blocks that are

not eligible for coalescing. Even if the buddy of such ablock becomes free, the
two blocks are not coalesced. Rather, the locally free blocks are retained in
anticipation of future demand for ablock of that size.

The following relationship holds:
N, =A +G;+L

In general, the lazy buddy system tries to maintain a pool of locally free blocks and only
invokes coalescing if the number of locally free blocks exceeds a threshold. If there are too many
locally free blocks, then there is a chance that there will be alack of free blocks at the next level
to satisfy demand. Most of the time, when ablock is freed, coalescing does not occur, so thereis
minimal bookkeeping and operational costs. When a block isto be allocated, no distinction is
made between locally and globally free blocks; again, this minimizes bookkeeping.

The criterion used for coalescing is that the number of locally free blocks of agiven size
should not exceed the number of allocated blocks of that size (i.e., we must have L, £ A). Thisis

areasonable guideline for restricting the growth of locally free blocks, and experimentsin
[BARKS89] confirm that this scheme results in noticeable savings.
To implement the scheme, the authors define a delay variable as follows:

Figure 8.24 shows the algorithm.

-23-



Table8.5 UNIX SVYR4 Memory Management Parameters (page 1 of 2)

Page Table Entry

Page frame number
Refers to framein real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and contents of this
field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a separate copy
of the page must first be made for al other processes that share the page. This feature allows the copy
operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.

M odify
Indicates page has been modified.

Reference
Indicates page has been referenced. This bit is set to zero when the page isfirst loaded and may be
periodically reset by the page replacement algorithm.

Valid
Indicates pageisin main memory.
Protect
Indicates whether write operation is allowed.
Disk Block Descriptor
Swap device number

Logical device number of the secondary device that holds the corresponding page. This allows more than
one deviceto be used for swapping.

Deviceblock number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executablefile. In the latter case, there is an indication as to whether the
virtual memory to be allocated should be cleared first.




Table8.5 UNIX SVYR4 Memory Management Parameter s (page 2 of 2)

Page Frame Data Table Entry
Page State
Indicates whether this frame is available or has an associated page. In the latter case, the

status of the page is specified: on swap device, in executable file, or DMA in progress.

Refer ence count
Number of processes that reference the page.

L ogical device
Logical device that contains a copy of the page.

Block number
Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on alist of free pages and on a hash queue of pages.
Swap-use Table Entry

Refer ence count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.




Cop )

Page frame number n
write| ify [rence tect

(a) Page table entry

‘ Swap device number ‘ Device block number ‘ Type of storage I

(b) Disk block descriptor

Reference| Logical Block Pfdata

Page state . .
5 count device number pointer

(c) Page frame data table entry

Reference | Page/storage
count unit number

(d) Swap-use table entry

Figure 8.22 UNIX SVR4 Memory Management Formats



End of Beginning
page list of page list

handspread

Figure 8.23 Two-Handed Clock Page-Replacement Algorithm



Initial value of DjisO
After an operation, the value of Dj is updated as follows

(I if the next operation is a block allocate request:
if there is any free block, select oneto allocate
if the selected block islocally free
then Dj :=Dj + 2
eseDj:=Dj+1
otherwise
first get two blocks by splitting alarger one into two (recursive operation)
alocate one and mark the other locally free
Di remains unchanged (but D may change for other block sizes because of the
recursive call)

(1) if the next operation is a block free request

CaseDjs 2
mark it locally free and freeit locally
Dj:=Dj-2

CaseDj=1
mark it globally free and free it globally; coalesce if possible
Dj.=0

CaseD;j=0
mark it globally free and free it globally; coalesce if possible
select one locally free block of size 2i and free it globally; coalesce if possible
Dj:=0

Figure 8.24 Lazy Buddy System Algorithm



11/17/00

84 LINUX MEMORY MANAGEMENT

Linux shares many of the characteristics of the memory management schemes of other UNIX
implementations but has its own unique features. Overall, the Linux memory-management
schemeis quite complex [DUBE98]. Here, we give a brief overview.

Linux Virtual Memory

Virtual Memory Addressing

Linux makes use of athree-level page table structure, consisting of the following types of
tables (each individual table is the size of one page):

- Pagedirectory: An active process has a single page directory that is the size of one page.
Each entry in the page directory points to one page of the page middle directory. The page
directory must be in main memory for an active process.

- Page middle directory: The page middle directory may span multiple pages. Each entry in
the page middle directory points to one page in the page table.

- Page table: The page table may also span multiple pages. Each page table entry refersto
one virtual page of the process.

To usethisthree-level page table structure, avirtual addressin Linux isviewed as
consisting of four fields. The leftmost (most significant) field is used as an index into the page
directory. The next field serves as an index into the page middle directory. The third field serves
as an index into the page table. The fourth field gives the offset within the selected page of
memory.

The Linux page table structure is platform independent and was designed to accommodate
the 64-bit Alpha processor, which provides hardware support for three levels of paging. With 64-
bit addresses, the use of only two levels of pages on the Alphawould result in very large page
tables and directories. The 32-bit Pentium/x86 architecture has atwo-level hardware paging
mechanism. The Linux software accommodates the two-level scheme by defining the size of the
page middle directory as one.

Page Allocation

To enhance the efficiency of reading in and writing out pages to and from main memory,
Linux defines a mechanism for dealing with contiguous blocks of pages mapped into contiguous
blocks of page frames. For this purpose, the buddy system is used. The kernel maintains alist of
contiguous page frame groups of fixed size; agroup may consists of 1, 2, 4, 8, 16, or 32 page
frames. As pages are alocated and deallocated in main memory, the available groups are split
and merged using the buddy algorithm.

Page Replacement Algorithm

The Linux page replacement algorithm is based on the clock algorithm described in Section
8.2 (see Figure 8.16). In the simple clock algorithm, a use bit and a modify bit are associated
with each page in main memory. In the Linux scheme, the use bit is replaced with an 8-bit age
variable. Each time that a page is accessed, the age variable is incremented. In the background,
Linux periodically sweeps through the global page pool and decrements the age variable for each
page as it rotates through all the pagesin main memory. A page with an age of Oisan "old" page
that has not been referenced in some time and is the best candidate for replacement. The larger
the value of age, the more frequently a page has been used in recent times and the less eligible it
isfor replacement. Thus, the Linux algorithm isaform of least frequently used policy.

Kernel Memory Allocation

-24-




11/17/00

The foundation of kernel memory allocation for Linux is the page allocation mechanism used for
user virtual memory management. Asin the virtual memory scheme, a buddy algorithm is used
so that memory for the kernel can be allocated and deallocated in units of one or more pages.
Because the minimum amount of memory that can be allocated in this fashion is one page, the
page allocator alone would be inefficient because the kernel requires small short-term memory
chunksin odd sizes. To accommodate these small chunks, Linux uses a scheme known as slab
allocation [BONW94] within an allocated page. On a Pentium/x86 machine, the page sizeis 4
kbytes, and chunks within a page may be allocated of sizes 32, 64, 128, 252, 508, 2040, and
4080 bytes.

The dlab allocator is relatively complex and is not examined in detail here; a good
description can be found in [VAHA96]. In essence, Linux maintains a set of linked lists, one for
each size of chunk. Chunks may be split and aggregated in a manner similar to the buddy
algorithm, and moved between lists accordingly.

-25-



11/17/00

9.3 TRADITIONAL UNIX SCHEDULING

In this section we examine traditional UNIX scheduling, which isused in both SYR3 and 4.3
BSD UNIX. These systems are primarily targeted at the time-sharing interactive environment.
The scheduling algorithm is designed to provide good response time for interactive users while
ensuring that low-priority background jobs do not starve. Although this algorithm has been
replaced in modern UNIX systems, it is worthwhile to examine the approach becauseiit is
representative of practical time-sharing scheduling algorithms. The scheduling scheme for SVR4
includes an accommodation for real-time requirements, and so its discussion is deferred to
Chapter 10.

Thetraditional UNIX scheduler employs multilevel feedback using round robin within
each of the priority queues. The system makes use of 1-second preemption. That is, if arunning
process does not block or complete within 1 second, it is preempted. Priority is based on process
type and execution history. The following formulas apply:

cPU (i) = CPU].2(| 1)
P(i) = Basg, +CPUJ—(|1) +nice,
where
CPU;(i) = Measure of processor utilization by processj through interval i
P,(i) = Priority of process at beginning of interval i; lower values equal higher
priorities
Base] = Base priority of process|
nice = user-controllable adjustment factor

]

The priority of each process is recomputed once per second, at which time a new
scheduling decision is made. The purpose of the base priority isto divide all processesinto fixed
bands of priority levels. The CPU and nice components are restricted to prevent a process from
migrating out of its assigned band (assigned by the base priority level). These bands are used to
optimize access to block devices (e.g., disk) and to allow the operating system to respond quickly
to system calls. In decreasing order of priority, the bands are:

- Swapper

- Block 1/0O device control

- File manipulation

- Character 1/0O device control
- User processes

This hierarchy should provide the most efficient use of the I/O devices. Within the user
process band, the use of execution history tends to penalize processor-bound processes at the
expense of 1/0-bound processes. Again, this should improve efficiency. Coupled with the round
robin preemption scheme, the scheduling strategy is well equipped to satisfy the requirements for
general-purpose time sharing.

An example of process scheduling is shown in Figure 9.17. Processes A, B, and C are
created at the same time with base priorities of 60 (we will ignore the nice value). The clock
interrupts the system 60 times per second and increments a counter for the running process. The
example assumes that none of the process block themselves and that no other processes are ready
to run. Compare this with Figure 9.16.

-26-




Process A Process B Process C

Time Priority ~ CPU Count Priority = CPU Count Priority CPU Count
0 60 0 60 0 60 0
1
2
| 60
75 30 60 0 60 0
1
2
’ 60
67 15 75 30 60 0
1
2
3 60
63 7 67 15 75 30
8
9
4 67
76 33 63 7 67 15
8
9
5 67
68 16 76 33 63 7

Shaded rectangle represents executing process

Figure 9.17 Example of Traditional UNIX Process Scheduling



11/17/00

10.3 LINUX SCHEDULING

Linux builds on the traditional UNIX scheduling described in Section 9.3 by adding two
scheduling classes for soft real-time processing. The three Linux scheduling classes are:

- SCHED_FIFO: Firgt-in-first-out real-time threads
- SCHED_RR: Round-robin real-time threads
- SCHED_OTHER: Other, non-real-time threads

Within each class, multiple priorities may be used, with priorities in the real-time classes
higher than the priorities for the SCHED _OTHER class. For FIFO threads, the following rules

apply:

1. Thesystem will not interrupt an executing FIFO thread except in the following cases:
a. Another FIFO thread of higher priority becomes ready.
b. The executing FIFO thread becomes blocked waiting for an event, such as 1/0O.
c. Theexecuting FIFO thread voluntarily gives up the processor following acall to the
primitive sched vyield.

2. When an executing FIFO thread isinterrupted, it is placed in the queue associated with its
priority.

3. When a FIFO thread becomes ready and if that thread has a higher priority than the
currently executing thread, then the currently executing thread is preempted and the
highest priority ready FIFO thread is executed. If more than one thread has that highest
priority, the thread that has been waiting the longest is chosen.

The SCHED_RR policy issimilar to the SCHED_FIFO policy, except for the addition of a
time quota associated with each thread. When a SCHED_RR thread has executed for itstime
guota, it is suspended and a real-time thread of equal or higher priority is selected for running.

Figure 10.9, from [COMP98], is an example that illustrates the distinction between FIFO
and RR scheduling. Assume a program has four threads with three relative priorities assigned as
shown in Figure 10.9a. Assume that all waiting threads are ready to execute when the current
thread waits or terminates and that no higher-priority thread is awakened while athread is
executing. Figure 10.9b shows aflow in which al of the threads are in the SCHED_FIFO class.
Thread D executes until it waits or terminates. Next, although threads B and C have the same
priority, thread B starts because it has been waiting longer than thread C. Thread B executes until
it waits or terminates, then thread C executes until it waits or terminates. Finally, thread A
executes.

Figure 10.9c shows asample flow if al of the threads are in the SCHED_RR class. Thread
D executes until it waits or terminates. Next, threads B and C are time sliced, because they both
have the same priority. Finally, thread A executes.

The final scheduling classis SCHED _OTHER. A thread in this class can only execute if
there are no real-time threads ready to execute. Within the SCHED _OTHER class, the traditional
UNIX scheduling algorithm described in Section 9.3 is used.

-28-




A | minimum
B | middle
D > B > (C > A
C| middle
D | maximum
(a) Relative thread priorities (b) Flow with FIFO scheduling

(c) Flow with RR scheduling

Figure 10.9 Example of Linux Scheduling



11/17/00

10.4 UNIX SVR4 SCHEDULING

The scheduling algorithm used in UNIX SV R4 is a complete overhaul of the scheduling
algorithm used in earlier UNIX systems (described in Section 9.3). The new algorithm is
designed to give highest preference to real-time processes, next-highest preference to kernel-
mode processes, and lowest preference to other user-mode processes, referred to as time-shared
processes.

The two major modifications implemented in SVR4 are:

1. The addition of a preemptable static priority scheduler and the introduction of a set of 160
priority levels divided into three priority classes.

2. Theinsertion of preemption points. Because the basic kernel is not preemptive, it can
only be split into processing steps that must run to completion without interruption. In
between the processing steps, safe places known as preemption points have been
identified where the kernel can safely interrupt processing and schedule a new process. A
safe place is defined as aregion of code where all kernel data structures are either
updated and consistent or locked via a semaphore.

Figure 10.10 illustrates the 160 priority levels defined in SVR4. Each processis defined to
belong to one of three priority classes and is assigned a priority level within that class. The
classes are:

- Real time (159-100): Processes at these priority levels are guaranteed to be selected to run
before any kernel or time-sharing process. In addition, real-time processes can make use of
preemption points to preempt kernel processes and user processes.

- Kernel (99-60): Processes at these priority levels are guaranteed to be selected to run
before any time-sharing process but must defer to real-time processes.

- Time-shared (59-0): The lowest-priority processes, intended for user applications other
than real-time applications.

Figure 10.11 indicates how scheduling isimplemented in SVR4. A dispatch queueis
associated with each priority level, and processes at a given priority level are executed in round-
robin fashion. A bit-map vector, dgact map, contains one bit for each priority level; the bit is
set to one for any priority level with a nonempty queue. Whenever arunning process leaves the
Running state, due to a block, time-slice expiration, or preemption, the dispatcher checks
dgact map and dispatches aready process from the highest-priority nonempty queue. In
addition, whenever a defined preemption point is reached, the kernel checks aflag called
kprunr un. If set, thisindicates that at |east one real-time processisin the Ready state, and the
kernel preempts the current processif it isof lower priority than the highest-priority real-time
ready process.

Within the time-sharing class, the priority of aprocessis variable. The scheduler reduces
the priority of a process each timeit uses up atime quantum, and it raisesits priority if it blocks
on an event or resource. The time quantum allocated to a time-sharing process depends on its
priority, ranging from 100 msfor priority 0 to 10 msfor priority 59. Each real-time process has a
fixed priority and afixed time quantum.

-29-




Priority Global Scheduling

Class Value Sequence
159 first
Real-time °
100
99
Kernel °
60
59
Time-shared *
. \ 4
0 last

Figure 10.10 SVR4 Priority Classes



sandan() ynedsi(q HIAS

[1°01 3131

6S1| bdsip

[ 0 | deunoebp




11/17/00

11.8 UNIX SVR41/0

In UNIX, each individual I/O device is associated with a special file. These are managed by the
file system and are read and written in the same manner as user datafiles. This provides a clean,
uniform interface to users and processes. To read from or write to a device, read and write
requests are made for the special file associated with the device.

Figure 11.14 illustrates the logical structure of the I/O facility. The file subsystem manages
files on secondary storage devices. In addition, it serves as the process interface to devices,
because these are treated asfiles.

There are two types of 1/0 in UNIX: buffered and unbuffered. Buffered I/O passes through
system buffers, whereas unbuffered I/O typically involves the DMA facility, with the transfer
taking place directly between the 1/0 module and the process 1/0 area. For buffered /O, two
types of buffers are used: system buffer caches and character queues.

Buffer Cache
The buffer cache in UNIX is essentially adisk cache. 1/0 operations with disk are handled
through the buffer cache. The data transfer between the buffer cache and the user process space
aways occurs using DMA. Because both the buffer cache and the process I/O areaarein main
memory, the DMA facility isused in this case to perform a memory-to-memory copy. This does
not use up any processor cycles, but it does consume bus cycles.

To manage the buffer cache, three lists are maintained:

- Freelist: List of dl slotsin the cache (aslot isreferred to as abuffer in UNIX; each slot
holds one disk sector) that are available for allocation

- Devicelist: List of al buffers currently associated with each disk

- Driver 1/0 queue: List of buffersthat are actually undergoing or waiting for 1/O on a
particular device

All buffers should be on the free list or on the driver I/O queue list. A buffer, once
associated with a device, remains associated with the device evenif it ison the free list, until is
actually reused and becomes associated with another device. These lists are maintained as
pointers associated with each buffer rather than physically separate lists.

When areference is made to a physical block number on a particular device, the operating
system first checks to seeif the block isin the buffer cache. To minimize the search time, the
devicelist is organized as a hash table, using a technique similar to the overflow with chaining
technique discussed in Appendix 8A (Figure 8.26b). Figure 11.15 depicts the generad
organization of the buffer cache. There is a hash table of fixed length that contains pointersinto
the buffer cache. Each reference to a (device#, block#) maps into a particular entry in the hash
table. The pointer in that entry points to the first buffer in the chain. A hash pointer associated
with each buffer points to the next buffer in the chain for that hash table entry. Thus, for all
(devicett, block#) references that map into the same hash table entry, if the corresponding block
isin the buffer cache, then that buffer will be in the chain for that hash table entry. Thus, the
length of the search of the buffer cache is reduced by afactor of on the order of N, where N isthe
length of the hash table.

For block replacement, a least-recently-used algorithm is used: After a buffer has been
allocated to a disk block, it cannot be used for another block until all other buffers have been
used more recently. The free list preserves this least-recently-used order.

Character Queue

Block-oriented devices, such as disk and tape, can be effectively served by the buffer cache. A
different form of buffering is appropriate for character-oriented devices, such as terminals and
printers. A character queue is either written by the I/O device and read by the process or written

-30-




11/17/00

by the process and read by the device. In both cases, the producer/consumer model introduced in
Chapter 5 is used. Thus, character queues may only be read once; as each character isread, it is
effectively destroyed. Thisisin contrast to the buffer cache, which may be read multiple times
and hence follows the readers/writers model (also discussed in Chapter 5).

Unbuffered 1/0

Unbuffered I/O, which is simply DMA between device and process space, is aways the fastest
method for a process to perform I/O. A process that is performing unbuffered I/O islocked in
main memory and cannot be swapped out. This reduces the opportunities for swapping by tying
up part of main memory, thus reducing the overall system performance. Also, the I/O deviceis
tied up with the process for the duration of the transfer, making it unavailable for other
processes.

UNI X Devices
UNIX recognizes five types of devices:

- Disk drives

- Tapedrives

- Terminals

- Communication lines
- Printers

Table 11.5 shows the types of 1/0 suited to each type of device. Disk drives are heavily
used in UNIX, are block oriented, and have the potential for reasonable high throughput. Thus,
1/O for these devices tends to be unbuffered or via buffer cache. Tape drives are functionally
similar to disk drives and use similar 1/O schemes.

Because terminals involve relatively slow exchange of characters, terminal 1/0 typically
makes use of the character queue. Similarly, communication lines require serial processing of
bytes of data for input or output and are best handled by character queues. Finally, the type of
1/O used for a printer will generally depend on its speed. Slow printers will normally use the
character queue, while afast printer might employ unbuffered I/O. A buffer cache could be used
for afast printer. However, because data going to a printer are never reused, the overhead of the
buffer cache is unnecessary.

-31-



Table 11.5 Device l/O in UNI X

Unbuffered 1/0 Buffer Cache Character Queue
Disk drive X X
Tapedrive X X
Terminals X
Communication lines X
Printers X X




File Subsystem

A 4

Buffer [Cache

Character

Block

Device Drivers

Figure 11.14 UNIX I/O Structure



wn
e
= [72)
3 8
~ =
z E
s -
Device List 8 §
Hash Table Buffer Cache R
P -
1 1
1 1
1 1
Device#, Block# - - -! :
-=>
- >
1
1
1
1
1
1
1

Free List o

Pointer

Figure 11.15 UNIX Buffer Cache Organization



11/17/00

12.7 UNIX FILE MANAGEMENT

The UNIX kernel views all files as streams of bytes. Any internal logical structure is application
specific. However, UNIX is concerned with the physical structure of files.
Four types of files are distinguished:

- Ordinary: Filesthat contain information entered in them by a user, an application
program, or a system utility program.

- Directory: Containsalist of file names plus pointers to associated inodes (index nodes),
described later. Directories are hierarchically organized (Figure 12.4). Directory files are
actually ordinary files with special write protection privileges so that only the file system
can write into them, while read access is available to user programs.

- Special: Used to access peripheral devices, such as terminals and printers. Each I/O device
is associated with a special file, as discussed in Section 11.7.

- Named: Named pipes, as discussed in Section 6.7.

In this section, we are concerned with the handling of ordinary files, which correspond to
what most systems treat asfiles.

Inodes
All types of UNIX files are administered by the operating system by means of inodes. An inode
(information node) is a control structure that contains the key information needed by the
operating system for a particular file. Severa file names may be associated with asingle inode,
but an active inode is associated with exactly onefile, and each fileis controlled by exactly one
inode.

The attributes of the file aswell as its permissions and other control information are stored
in theinode. Table 12.4 lists the contents.

File Allocation

File allocation is done on ablock basis. Allocation is dynamic, as needed, rather than using
preallocation. Hence, the blocks of afile on disk are not necessarily contiguous. An indexed
method is used to keep track of each file, with part of the index stored in the inode for thefile.
The inode includes 39 bytes of address information that is organized as thirteen 3-byte addresses,
or pointers. Thefirst 10 addresses point to the first 10 data blocks of the file. If the file is longer
than 10 blocks long, then one or more levels of indirection is used as follows:

- The eleventh address in the inode points to a block on disk that contains the next portion of
theindex. Thisisreferred to as the single indirect block. This block contains the pointers to
succeeding blocksin thefile.

- If the file contains more blocks, the twelfth address in the inode points to a double indirect
block. This block contains alist of addresses of additional single indirect blocks. Each of
single indirect blocks, in turn, contains pointers to file blocks.

- If the file contains still more blocks, the thirteenth address in the inode pointsto atriple
indirect block that isathird level of indexing. This block points to additional double
indirect blocks.

All of thisisillustrated in Figure 12.13. The total number of data blocks in afile depends
on the capacity of the fixed-size blocksin the system. In UNIX System V, the length of a block
is 1 Kbyte, and each block can hold atotal of 256 block addresses. Thus, the maximum size of a
file with this schemeis over 16 Gbytes (Table 12.5).

This scheme has several advantages:

-32-




11/17/00

1. Theinodeis of fixed size and relatively small and hence may be kept in main memory for

long periods.
2. Smaller files may be accessed with little or no indirection, reducing processing and disk
accesstime.

3. Thetheoretical maximum size of afile islarge enough to satisfy virtually all applications.

-33-



Table 12.4 Information in a UNI X Disk-Resident | node

File M ode

Link Count

Owner ID

Group ID

File Size

File Addresses

L ast Accessed

Last Modified

Inode M odified

16-bit flag that stores access and execution permissions associated with
thefile.

12-14 Filetype (regular, directory, character or block special, FIFO pipe
9-11 Execution flags

8 Owner read permission
Owner write permission
Owner execute permission
Group read permission
Group write permission
Group execute permission
Other read permission
Other write permission
Other execute permission

O Fr N WPHA OO

Number of directory referencesto thisinode
Individual owner of file

Group owner associated with thisfile
Number of bytesinfile

39 bytes of address information

Time of last file access

Time of last file modification

Time of last inode modification




Table 12.5 Capacity of a UNIX File

L evel

Number of Blocks

Number of Bytes

Direct
Single Indirect
Double I ndirect

TripleIndirect

10

256

256" 256 = 65K
256" 65K =16M

10K

256K

65M

16G




Direct(0)

Direct(1)

Direct(2)

Direct(3)

Direct(4)

Direct(5)

Direct(6)

Direct(7)

Direct(8)

Direct(9)

single
indirect

double
indirect

triple
indirect

Inode address
fields

Blocks on disk

Figure 12.13 UNIX Block Addressing Scheme



11/17/00

13.6 SUN CLUSTER

Sun Cluster is adistributed operating system built as a set of extensions to the base Solaris UNIX
system. It provides cluster with a single-system image; that is, the cluster appearsto the user and
applications as a single computer running the Solaris operating system.

Figure 13.17 shows the overall architecture of Sun Cluster. The major components are:

- Object and communication support
- Process management

- Networking

- Global distributed file system

Object and Communication Support

The Sun Cluster implementation is object oriented. The CORBA object model (see Appendix B)
is used to define objects and the remote procedure call (RPC) mechanism implemented in Sun
Cluster. The CORBA Interface Definition Language (IDL) is used to specify interfaces between
MC components in different nodes. The elements of MC are implemented in the object-oriented
language C++. The use of a uniform object model and IDL provides a mechanism for internode
and intranode interprocess communication. All of thisis built on top of the Solaris kernel with
virtually no changes required to the kernel.

Process M anagement

Global process management extends process operations so that the location of aprocessis
transparent to the user. Sun Cluster maintains a global view of processes so that there is a unique
identifier for each process in the cluster and so that each node can learn the location and status of
each process. Process migration (described in Chapter 14) is possible: a process can move from
one node to another during its lifetime, to achieve load balancing or for failover. However, the
threads of a single process must be on the same node.

Networking
The designers of Sun Cluster considered three approaches for handling network traffic:

1. Perform all network protocol processing on asingle node. In particular, for a TCP/IP-
based application, incoming (and outgoing) traffic would go through a network-
connection node that for incoming traffic would analyze TCP and | P headers and route
the encapsulated data to the appropriate node; and for outgoing traffic would encapsulate
data from other nodes in TCP/IP headers. This approach is not scalable to a large number
of nodes and so was rejected.

2. Assign aunique | P address to each node and run the network protocols over the external
network directly to each node. One difficulty with this approach is that the cluster
configuration is no longer transparent to the outside world. Another complication is the
difficulty of failover when a running application moves to another node with a different
underlying network address.

3. Use apacket filter to route packets to the proper node and perform protocol processing on
that node. Externally, the cluster appears as a single server with asingle IP address.
Incoming connections (client requests) are load balanced among the available nodes of
the cluster. Thisisthe approach adopted in Sun Cluster.

The Sun Cluster networking subsystem has three key elements:




11/17/00

1. Incoming packets are first received on the node that has the network adapter physically
attached to it; the receiving node filters the packet and deliversit to the correct target
node over the cluster interconnect.

2. All outgoing packets are routed over the cluster interconnect to the node (or one of
multiple alternative nodes) that has an external network physical connection. All protocol
processing for outgoing packets is done by the originating node.

3. A global network configuration database is maintained to keep track of network traffic to
each node.

Global File System

The most important element of Sun Cluster isthe global file system, depicted in Figure 13.18,
which contrasts MC file management with the basic Solaris scheme. Both are built on the use of
vnode and virtual file system concepts.

In Solaris, the virtual node (vnode) structure is used to provide a powerful, general-purpose
interface to all types of file systems. A vnode is used to map pages of memory into the address
space of aprocess and to permit access to afile system. While an inode is used to map processes
to UNIX files, avnode can map a process to an object in any file system type. In thisway, a
system call need not understand the actual object being manipulated, only how to make the
proper object-oriented type call using the vnode interface. The vhode interface accepts general-
purpose file manipulation commands, such as read and write, and translates them into actions
appropriate for the subject file system. Just as vnodes are used to describe individual file system
objects, the virtual file system (vfs) structures are used to describe entire file systems. The vfs
interface accepts genera -purpose commands that operate on entire files and tranglates them into
actions appropriate for the subject file system.

In Sun Cluster, the global file system provides a uniform interface to files distributed over
the cluster. A process can open afile located anywhere in the cluster, and processes on all nodes
use the same pathname to locate a file. To implement global file access, MC includes a proxy file
system built on top of the existing Solaris file system at the vhode interface. The vfs'vhode
operations are converted by a proxy layer into object invocations (see Figure 13.18b). The
invoked object may reside on any node in the system. The invoked object performs alocal
vnode/vfs operation on the underlying file system. Neither the kernel nor the existing file
systems have to be modified to support this global file environment.

To reduce the number of remote object invocations, caching is used. Sun Cluster supports
caching of file contents, directory information, and file attributes.

-35-



C2) JUNREL 1))

ININI)S JAISN[) UNS L€ N3

[PUIdY] SLIB[OS SUNSIXY

Jomduwre.a g 393
suored0AUl 393[qQ 1 4 19390 ++)
$95S9001J W)SAS AL
NIOMPN
dBLINU] [[B) WIISAS

suonpedrddy

J19)sn[) ung



SUOISUI)IXF WIIISAS J[L] 1ISN[) ung Q€Y 2131

J9sn[) ung (q) SLIE[OS pIepue)S (B)
WI)SAS WI)SAS
Y 9
ddeJI)uI )
SHA/SpoUA ddeJIuI
PRy L uonejudwddur 393[qo SAA/pouA
i T

UuoIBIOAUI
[qo

[PUIdY]

JAe] Axoad

ddeJIA)UI
SAA/ApouA

[PUIdY]




11/17/00

13.7 BEOWULF AND LINUX CLUSTERS

In 1994, the Beowulf project was initiated under the sponsorship of the NASA High
Performance Computing and Communications (HPCC) project. Its goal wasto investigate the
potential of clustered PCs for performing important computation tasks beyond the capabilities of
contemporary workstations at minimum cost. Today, the Beowulf approach is widely
implemented and is perhaps the most important cluster technology available.

Beowulf Features
Key features of Beowulf include [RIDG97]:

- Mass market commodity components

- Dedicated processors (rather than scavenging cycles from idle workstations)
- A dedicated, private network (LAN or WAN or internetted combination)

- No custom components

- Easy replication from multiple vendors

- Scalable 1/0

- A freely available software base

- Use of freely available distribution computing tools with minimal changes

- Return of the design and improvements to the community

Although elements of Beowulf software have been implemented on a number of different
platforms, the most obvious choice for abase is Linux, and most Beowulf implementations use a
cluster of Linux workstations and/or PCs. Figure 13.19 depicts a representative configuration.
The cluster consists of a number of workstations, perhaps of differing hardware platforms, all
running the Linux operating system. Secondary storage at each workstation may be made
available for distributed access (for distributed file sharing, distributed virtual memory, or other
uses). The cluster nodes (the Linux boxes) are interconnected with a commodity networking
approach, typically Ethernet. The Ethernet support may be in the form of a single Ethernet
switch or an interconnected set of switches. Commodity Ethernet products at the standard data
rates (10 Mbps, 100 Mbps, 1 Gbps) are used.

Beowulf Software

The Beowulf software environment isimplemented as an add-on to commercially available,
royalty-free base Linux distributions. The principa source of open-source Beowulf softwareis
the Beowulf site at www.beowulf.org, but numerous other organizations also offer free Beowul f
tools and utilities.

Each node in the Beowulf cluster runs its own copy of the Linux kernel and can function as
an autonomous Linux system. To support the Beowulf cluster concept, extensions are made to
the Linux kernel to allow the individual nodes to participate in a number of global namespaces.
Some examples of Beowulf system software:

- Beowulf distributed process space (BPROC): This package allows a process ID spaceto
span multiple nodes in a cluster environment and also provides mechanisms for starting
processes on other nodes. The goal of this package isto provide key elements needed for a
single system image on Beowulf cluster. BPROC provides a mechanism to start processes
on remote nodes without ever logging into another node and by making all the remote
processes visible in the process table of the cluster's front end node.

- Beowulf Ethernet Channel Bonding: Thisis amechanism that joins multiple low-cost
networks into asingle logical network with higher bandwidth. The only additional work
over ausing single network interface is the computationally simple task of distributing the

-36-




11/17/00

packets over the available device transmit queues. This approach alows load balancing
over multiple Ethernets connected to Linux workstations.

- Pvmsync: Thisisaprogramming environment that provides synchronization mechanisms
and shared data objects for processes in a Beowulf cluster.

- EnFuzion: EnFuzion consists of a set of tools for doing parametric computing, as
described in Section 13.4. Parametric computing involves the execution of a program asa
large number of jobs, each with different parameters or starting conditions. EnFusion
emulates a set of robot users on a single root node machine, each of which will log into one
of the many client node machines the form a cluster. Each job is set up to run with a
unique, programmed scenario, with an appropriate set of starting conditions [KAPPOO].

-37-



uoneIN3uo)) JINM0dY ILIUIL) I '€ IN3I ]

SIPUIYYF PIIOU0IIU]
10 JPUIRYY

S

SUONB)SHI0M
Xnur

33ea0]Ss paaeys
pamnqrusiq




