11/16/00

WINDOWS 2000

William Stallings

This document is an extract from

Operating Systems: Internals and Design Principles, Fourth Edition
Prentice Hall, 2000, ISBN 0-13-031999-6

It is available at WilliamStallings.com/OS4e.html

Copyright 2001 William Stallings

11/16/00

2.5 WINDOWS 2000 OVERVIEW.......ooiiiiiiinireeee et st 3
[TS (0] YOS 3
SINGIE-USEr MUITITASKINGveeuveieeeieeie sttt nae e sneenes 4
ATCRITECIUIE. ...ttt bbbttt e bbb nbe b 5

(@15 @ (o7 .2 (0] 1SR 5
USES PrOCESSES......ccueeireeiteeereesieesreessesanseessee s e s e e neesneesneesmnesneesnneenneesnneeneens 6
ClIEeNt/SErVEr MOGELcoeiieieeee et sa e 7
THreads @and SIMIP........ooi ettt 7
WindowS 2000 ODJECES.cuerueriiiieieiesie sttt st sr e sb e 8

4.4 WINDOWS 2000 THREAD AND SMP MANAGEMENTccoviinirinieieese e 10
Process and Thread ODJECES..........ccoeiiiieice e 10
U =" [T S 11
TRrEAM SEALES........ecveeiieiieeeee ettt b et nes 11
SUPPOrt FOr OS SUDSYSLEIMS.......c.eeiieiecee et enne s 11
Symmetric MUultiproCeSSiNg SUPPOITccveeieeeereerieeieseesieeseeseesteeeeseesseeeesseesseseens 12

6.9 WINDOWS 2000 CONCURRENCY MECHANISMS........ccoooiinirinineeie e 13

8.5 WINDOWS 2000 MEMORY MANAGEMENTccoiiiirenenereseseeee e 14
W2K Virtual AddreSS Mapc.ccceeieiieiiiee et e e eae s 14
LAY 222 S o |1 S 14

10.5 WINDOWS 2000 SCHEDULINGcooiiiiiniiriisiinieieiee et 16
Process and Thread Priorities.........ooe i 16
MultiprocesSor SChEAUIINGcc.veiieieiieseere et e e ae e 16

11.9 WINDOWS 2000 [/O....ceiuiitiriieiieiieieie ettt sttt st 18
BaSIC I/O MOAUIES ..ottt sb s 18
Asynchronous and SyNChronNOUS [/O..........cceeueieereeeseese et 18
SOTIWEAIE RAID ...ttt a bbb sre s 19

12.8 WINDOWS 2000 FILE SYSTEMooiiiiirieriesiriree et 20
Key FEatureS Of NTES ...ttt 20
NTFS Volume and File SIIUCIUIE.........ooeriiirieeiee e 20

NTFSVOIUME LAYOUL.........cooveeeeeieesieeiesieesteeeesee e ee e sae e esteeeesneenneenneas 21
MaSLEr File TaDIE......coueiieeeee e 21
S W)Y =01 1 U 22

13.5 WINDOWS 2000 CLUSTER SERVER........cccoootiiriieieieresesese s 23

15.6 WINDOWS 2000 SECURITYoiiiieiiieniisiesiesieseeee e sse e sse st s sse e 24
ACCESS CONLIOI SCNEIME ...t 24
AACCESS TOKEN ...ttt bbb bbbttt e e bbb naenbe e 24
SECUNTY DESCITLOIS. ... i eueeieeieeieesieeteeteste e teseesseesteeeesseesseeseesseesseeneesseesseeneesneensennsnas 25

-2

11/16/00

2.5 WINDOWS 2000 OVERVIEW

In this section, we provide an overview of Windows 2000. For brevity, we refer to Windows
2000 asW2K.

History

The story of W2K begins with avery different operating system, developed by Microsoft for the
first IBM persona computer, and referred to asMS-DOS or PC-DOS. The initial version, DOS
1.0, was released in August 1981. It consisted of 4000 lines of assembly-language source code
and ran in 8 Kbytes of memory using the Intel 8086 microprocessor.

When IBM developed a hard disk-based personal computer, the PC XT, Microsoft
developed DOS 2.0, released in 1983. It contained support for the hard disk and provided for
hierarchical directories. Heretofore, a disk could contain only one directory of files, supporting a
maximum of 64 files. While this was adequate in the era of floppy disks, it wastoo limited for a
hard disk, and the single-directory restriction was too clumsy. The new release allowed
directoriesto contain subdirectories as well asfiles. The new release also contained a richer set
of commands embedded in the operating system to provide functions that had to be performed by
external programs provided as utilities with release 1. Among the capabilities added were several
UNIX-like features, such as I/O redirection, which is the ability to change the input or output
identity for a given application, and background printing. The memory-resident portion grew to
24 Kbytes.

When IBM announced the PC AT in 1984, Microsoft introduced DOS 3.0. The AT
contained the Intel 80286 processor, which provided extended addressing and memory protection
features. These were not used by DOS. To remain compatible with previous rel eases, the
operating system simply used the 80286 as a"fast 8086." The operating system did provide
support for new keyboard and hard disk peripherals. Even so, the memory requirement grew to
36 Kbytes. There were severa notable upgradesto the 3.0 release. DOS 3.1, released in 1984,
contained support for networking of PCs. The size of the resident portion did not change; this
was achieved by increasing the amount of the operating system that could be swapped. DOS 3.3,
released in 1987, provided support for the new line of IBM machines, the PS/2. Again, this
release did not take advantage of the processor capabilities of the PS/2, provided by the 80286
and the 32-hit 80386 chips. The resident portion at this stage had grown to a minimum of 46
Kbytes, with more required if certain optional extensions were selected.

By thistime, DOS was being used in an environment far beyond its capabilities. The
introduction of the 80486 and then the Intel Pentium chip provided power and features that
simply could not be exploited by the simple-minded DOS. Meanwhile, beginning in the early
1980s, Microsoft began development of a graphical user interface (GUI) that would be
interposed between the user and DOS. Microsoft's intent was to compete with Macintosh, whose
operating system was unsurpassed for ease of use. By 1990, Microsoft had a version of the GUI,
known as Windows 3.0, which approached the user friendliness of Macintosh. However, it was
still hamstrung by the need to run on top of DOS.

After an abortive attempt by Microsoft to develop with IBM a next-generation operating
system,! which would exploit the power of the new microprocessors and which would
incorporate the ease-of-use features of Windows, Microsoft struck out on its own and devel oped
anew operating system from the ground up, Windows NT. Windows NT exploits the capabilities
of contemporary microprocessors and provides multitasking in a single-user or multiple-user
environment.

1 1BM went on to develop OS/2 on its own. Like Windows NT, OS/2 is a multitasking,
multithreaded operating system.
-3

11/16/00

The first version of Windows NT (3.1) was released in 1993, with the same GUI as
Windows 3.1, another Microsoft operating system (the follow-on to Windows 3.0). However,
NT 3.1 was anew 32-bit operating system with the ability to support older DOS and Windows
applications, aswell as provide OS/2 support.

After several versionsof NT 3.x, Microsoft released NT 4.0. NT 4.0 has essentially the
same internal architecture as 3.x. The most notable external change isthat NT 4.0 provides the
same user interface as Windows 98. The major architectural change is that several graphics
components that ran in user mode as part of the Win32 subsystem in 3.x have been moved into
the Windows NT Executive, which runsin kernel mode. The benefit of this changeisto speed up
the operation of these important functions. The potential drawback is that these graphics
functions now have access to low-level system services, which could impact the reliability of the
operating system.

In 2000, Microsoft introduced the next major upgrade, now called Windows 2000. Again,
the underlying Executive and microkernel architecture is fundamentally the sasmeasin NT 4.0,
but new features have been added. The emphasisin W2K isthe addition of services and
functions to support distributed processing. The central element of W2K's new featuresis Active
Directory, which is a distributed directory service able to map names of arbitrary objectsto any
kind of information about those objects.

One final general point to make about W2K is the distinction between W2K Server and
W2K Professional. In essence, the microkernel and executive architecture and services remain
the same, but Server includes some services required to use as a network server.

Single-User Multitasking
W2K isasignificant example of what has become the new wave in microcomputer operating
systems (other examples are OS/2 and MacOS). W2K was driven by a need to exploit the
processing capabilities of today's 32-bit microprocessor, which rival mainframes and
minicomputers of just afew years ago in speed, hardware sophistication, and memory capacity.
One of the most significant features of these new operating systemsis that, although they
are still intended for support of a single interactive user, they are multitasking operating systems.
Two main developments have triggered the need for multitasking on personal computers,
workstations, and servers. First, with the increased speed and memory capacity of
microprocessors, together with the support for virtual memory, applications have become more
complex and interrelated. For example, a user may wish to employ aword processor, a drawing
program, and a spreadsheet application simultaneoudly to produce a document. Without
multitasking, if a user wishes to create a drawing and paste it into aword processing document,
the following steps are required:

Open the drawing program.

Create the drawing and saveit in afile or on atemporary clipboard.
Close the drawing program.

Open the word processing program.

Insert the drawing in the correct location.

ghrwdE

If any changes are desired, the user must close the word processing program, open the
drawing program, edit the graphic image, save it, close the drawing program, open the word
processing program, and insert the updated image. This becomes tedious very quickly. Asthe
services and capabilities available to users become more powerful and varied, the single-task
environment becomes more clumsy and user unfriendly. In a multitasking environment, the user
opens each application as needed, and leaves it open. Information can be moved around among a
number of applications easily. Each application has one or more open windows, and a graphical
interface with a pointing device such as a mouse allows the user to navigate quickly in this
environment.

11/16/00

A second motivation for multitasking is the growth of client/server computing. With
client/server computing, a personal computer or workstation (client) and a host system (server)
are used jointly to accomplish a particular application. The two are linked together, and each is
assigned that portion of the job that it is suited to its capabilities. Client/server can be achieved in
alocal area network of personal computers and servers or by means of alink between a user
system and alarge host such as a mainframe. An application may involve one or more personal
computers and one or more server devices. To provide the required responsiveness, the operating
system needs to support sophisticated real-time communication hardware and the associated
communications protocols and data transfer architectures while at the same time supporting
ongoing user interaction.

The foregoing remarks apply to the Professional version of W2K. The Server version is
also multitasking but may support multiple users. It supports multiple terminal server
connections as well as providing shared services used by multiple users on the network. As an
Internet server, W2K may support thousands of simultaneous Web connections.

Architecture

Figure 2.13, based on one in [SOLO98M], illustrates the overall structure of W2K. Its modular
structure gives W2K considerable flexibility. It is designed to execute on a variety of hardware
platforms and supports applications written for a variety of other operating systems. As of this
writing, W2K is only implemented on the Pentium/x86 hardware platform.

Aswith virtually al operating systems, W2K separates application-oriented software from
operating-system software. The latter, which includes the Executive, the microkernel, device
drivers, and the hardware abstraction layer, runsin kernel mode. Kernel mode software has
access to system data and to the hardware. The remaining software, running in user mode, has
limited access to system data.

OS Organization

W2K does not have a pure microkernel architecture but what Microsoft refersto asa
modified microkernel architecture. Aswith a pure microkernel architecture, W2K is highly
modular. Each system function is managed by just one component of the operating system. The
rest of the operating system and all applications access that function through the responsible
component using a standard interface. Key system data can only be accessed through the
appropriate function. In principle, any module can be removed, upgraded, or replaced without
rewriting the entire system or its standard application program interface (APIs). However, unlike
apure microkernel system, W2K is configured so that many of the system functions outside the
microkernel run in kernel mode. The reason is performance. The W2K developers found that
using the pure microkernel approach, many non-microkernel functions required several process
or thread switches, mode switches, and the use of extramemory buffers.

One of the goals of the W2K design is portability, that it be able to run not just on Intel
machines but on avariety of hardware platforms. To satisfy this goal, most of the W2K
Executive sees the same view of the underlying hardware, using the following layered structure:

- Hardwar e abstraction layer (HAL): Maps between generic hardware commands and
responses and those unique to a specific platform. It isolates the operating system from
platform-specific hardware differences. The HAL makes each machine's system bus,
direct-memory access (DMA) controller, interrupt controller, system timers, and memory
module ook the same to the kernel. It also delivers the support needed for symmetric
multiprocessing (SMP), explained subsequently.

- Microkernel: Consists of the most used and most fundamental components of the
operating system. The kernel manages thread scheduling, process switching, exception and
interrupt handling, and multiprocessor synchronization. Unlike the rest of the Executive
and the user level, the microkernel's own code does not run in threads. Hence, it is the only
part of the operating system that is not preemptible or pageable.

-5

11/16/00

- Devicedrivers: Include both file system and hardware device drivers that transate user 1/0
function calls into specific hardware device 1/0 requests.

The W2K Executive includes modules for specific system functions and provides an AP
for user-mode software. Following is a brief description of each of the Executive modules:

- 1/0O manager: Provides a framework through which /O devices are accessible to
applications, and is responsible for dispatching to the appropriate device drivers for further
processing. The I/0O manager implements all the W2K 1/0 APIs and enforces security and
naming for devices and file systems (using the object manager). W2K 1/O is discussed in
Chapter 11.

- Object manager: Creates, manages, and deletes W2K Executive objects and abstract data
types that are used to represent resources such as processes, threads, and synchronization
objects. It enforces uniform rules for retaining, naming, and setting the security of objects.
The object manager also creates object handles, which consist of access control information
and a pointer to the object. W2K objects are discussed later in this section.

- Security reference monitor: Enforces access-validation and audit-generation rules. The
W2K object-oriented model allows for a consistent and uniform view of security, right
down to the fundamental entities that make up the Executive. Thus, W2K uses the same
routines for access validation and for audit checks for all protected objects, including files,
processes, address spaces, and 1/0 devices. W2K security is discussed in Chapter 15.

- Process/thread manager: Creates and deletes objects and tracks process and thread
objects. W2K process and thread management are described in Chapter 4.

- Local procedure call (LPC) Facility: Enforces a client/server relationship between
applications and executive subsystems within asingle system, in amanner similar to a
remote procedure call (RPC) facility used for distributed processing.

- Virtual memory manager: Maps virtual addresses in the process's address space to
physical pages in the computer's memory. W2K virtual memory management is described
in Chapter 8.

- Cache manager: Improves the performance of file-based 1/0 by causing recently
referenced disk datato reside in main memory for quick access, and by deferring disk
writes by holding the updates in memory for a short time before sending them to the disk.

- Windows/graphics modules: Creates the windows-oriented screen interface and manages
the graphics devices.

User Processes
Four basic types of user processes are supported by W2K:

- Special system support processes: Include services not provided as part of the W2K
operating system, such as the logon process and the session manager.

- Server processes. Other W2K services such as the event logger.

- Environment subsystems. Expose the native W2K services to user applications and thus
provide an OS environment, or personality. The supported subsystems are Win32, PosiX,
and OS/2. Each environment subsystem includes dynamic link libraries (DLLS) that
convert the user application callsto W2K calls.

- User applications: Can be one of five types. Win32, Posix, OS/2, Windows 3.1, or MS-
DOS.

W2K is structured to support applications written for W2K, Windows 98, and several other
operating systems. W2K provides this support using a single, compact Executive through
protected environment subsystems. The protected subsystems are those parts of W2K that
interact with the end user. Each subsystem is a separate process, and the Executive protectsits
address space from that of other subsystems and applications. A protected subsystem provides a
graphical or command-line user interface that defines the look and feel of the operating system

-6

11/16/00

for auser. In addition, each protected subsystem provides the API for that particular operating
environment. This means that applications created for a particular operating environment may
run unchanged on W2K, because the operating system interface that they see is the same as that
for which they were written. So, for example, OS/2-based applications can run under the W2K
operating system without modification. Furthermore, because the W2K system isitself designed
to be platform independent, through the use of the hardware abstraction layer (HAL), it should
be relatively easy to port both the protected subsystems and the applications they support from
one hardware platform to another. In many cases, arecompileisall that should be required.

The most important subsystem is Win32. Win32 is the API implemented on both W2K and
Windows 98. Some of the features of Win32 are not available in Windows 98, but those features
implemented on Windows 98 are identical with those of W2K. Table 2.5 lists some of the key
functions provided for the programmer by Win32.

Client/Server Model

The Executive, the protected subsystems, and the applications are structured using the
client/server computing model, which is acommon model for distributed computing and which
isdiscussed in Part Six. This same architecture can be adopted for use internal to asingle system,
asisthe case with W2K.

Each environment subsystem and executive service subsystem is implemented as one or
more processes. Each process waits for arequest from aclient for one of its services, for
example memory services, process creation services, or processor scheduling services. A client,
which can be an application program or another operating system module, requests a service by
sending a message. The message is routed through the Executive to the appropriate server. The
server performs the requested operation and returns the results or status information by means of
another message, which is routed through the Executive back to the client.

Advantages of a client/server architecture include the following:

- It simplifies the Executive. It is possible to construct a variety of APIswithout any conflicts
or duplications in the Executive. New APIs can be added easily.

- Itimproves reliability. Each executive services module runs on a separate process, with its
own partition of memory, protected from other modules. Furthermore, the clients cannot
directly access hardware or modify memory in which the Executiveis stored. A single
client can fail without crashing or corrupting the rest of the operating system.

- It provides a uniform means for applications to communicate with the Executive viaLPCs
without restricting flexibility. The message-passing process is hidden from the client
applications by function stubs, which are nonexecutable placeholders kept in dynamic link
libraries (DLLs). When an application makes an API call to an environment subsystem, the
stub in the client application packages the parameters for the call and sends them as a
message to a server subsystem that implements the call.

- It provides a suitable base for distributed computing. Typically, distributed computing
makes use of a client/server model, with remote procedure calls implemented using
distributed client and server modules and the exchange of messages between clients and
servers. With W2K, alocal server can pass a message on to aremote server for processing
on behalf of local client applications. Clients need not know whether arequest is serviced
locally or remotely. Indeed, whether arequest is serviced locally or remotely can change
dynamically based on current load conditions and on dynamic configuration changes.

Threadsand SMP

Two important characteristics of W2K are its support for threads and for symmetric
multiprocessing (SMP), both of which were introduced in Section 2.4. [CUST93] lists the
following features of W2K that support the threads and SMP:

-7

11/16/00

- Operating-system routines can run on any available processor, and different routines can
execute simultaneously on different processors.

- W2K supports the use of multiple threads of execution within a single process. Multiple
threads within the same process may execute on different processors simultaneously.

- Server processes may use multiple threads to process requests from more than one client
simultaneously.

- W2K provides mechanisms for sharing data and resources between processes and flexible
interprocess communication capabilities.

Windows 2000 Objects

W2K draws heavily on the concepts of object-oriented design. This approach facilitates the
sharing of resources and data among processes and the protection of resources from unauthorized
access. Among the key object-oriented concepts used by W2K are the following:

- Encapsulation: An object consists of one or more items of data, called attributes, and one
or more procedures that may be performed on those data, called services. The only way to
access the data in an object is by invoking one of the object's services. Thus, the datain the
object can easily be protected from unauthorized use and from incorrect use (e.g., trying to
execute a nonexecutabl e piece of data).

- Object classand instance: An object classis atemplate that lists the attributes and
services of an object and defines certain object characteristics. The operating system can
create specific instances of an object class as needed. For example, there is a single process
object class and one process object for every currently active process. This approach
simplifies object creation and management.

- Inheritance: Thisis not supported at the user level but is supported to some extent within
the Executive. For example, Directory objects are examples of container objects. One
property of a container object is that the objects they contain can inherit properties from the
container itself. As an example, suppose you have a directory in the file system that hasits
compressed flag set. Then any files you might create within that directory container will
also have their compressed flag set.

- Polymor phism: Internally, W2K uses a common set of API functions to manipulate
objects of any type; thisis afeature of polymorphism, as defined in Appendix B. However,
W2K is not completely polymorphic because there are many APIsthat are specific to
specific object types.

The reader unfamiliar with object-oriented concepts should review Appendix B at the end of this
book.

Not all entitiesin W2K are objects. Objects are used in cases where data are opened for
user mode access or when data access is shared or restricted. Among the entities represented by
objects are files, processes, threads, semaphores, timers, and windows. W2K creates and
manages al types of objectsin auniform way, viathe object manager. The object manager is
responsible for creating and destroying objects on behalf of applications and for granting access
to an object's services and data.

Each object within the Executive, sometimes referred to as akernel object (to distinguish
from user-level objects not of concern to the Executive), exists as a memory block allocated by
the kernel and is accessible only by the kernel. Some elements of the data structure (e.g., object
name, security parameters, usage count) are common to all object types, while other elements are
specific to a particular object type (e.g., athread object's priority). These kernel object data
structures are accessible only by the kernel; it isimpossible for an application to locate these data
structures and read or write them directly. Instead, applications manipulate objects indirectly
through the set of object manipulation functions supported by the Executive. When an object is
created, the application that request the creation receives back a handle for the object. In essence

-8

11/16/00

ahandleis apointer to the referenced object. This handle can then be used by any thread within
the same process to invoke Win32 functions that work with objects.

Objects may have security information associated with them, in the form of a Security
Descriptor (SD). This security information can be used to restrict access to the object. For
example, a process may create a named semaphore object with the intent that only certain users
should be able to open and use that semaphore. The SD for the semaphore object can list those
usersthat are allowed (or denied) access to the semaphore object along with the sort of access
permitted (read, write, change, etc.).

In W2K, objects may be either named or unnamed. When a process creates an unnamed
object, the object manager returns a handle to that object, and the handle is the only way to refer
to it. Named objects have a name that other processes can use to obtain a handle to the object.
For example, if process A wishes to synchronize with process B, it could create a named event
object and pass the name of the event to B. Process B could then open and use that event object.
However, if A simply wished to use the event to synchronize two threads within itself, it would
create an unnamed event object, because there is no need for other processesto be able to use
that event.

As an example of the objects managed by W2K, we list the two categories of objects
managed by the microkernel;

- Control objects: Used to control the operation of the microkernel in areas not affecting
dispatching and synchronization. Table 2.6 lists the microkernel control objects.

- Dispatcher objects. Control the dispatching and synchronization of system operations.
These are described in Chapter 6.

W2K isnot afull-blown object-oriented operating system. It is not implemented in an
object-oriented language. Data structures that reside completely within one Executive component
are not represented as objects. Nevertheless, W2K illustrates the power of object-oriented
technology and represents the increasing trend toward the use of this technology in operating-
system design.

Table2.5 SomeAreas Covered by theWin32 APl [RICH97]

Atoms

Child controls

Clipboard manipulations
Communications

Consoles

Debugging

Dynamic link libraries (DLLS)
Event logging

Files

Graphics drawing primitives
Keyboard and mouse input
Memory management
Mutimedia services

Networks

Pipes and mailslots

Printing

Processes and threads
Registry database manipulation
Resources

Security

Services

Structured exception handling
System information

Tape backup

Time

Window management

Table2.6 NT Microkernel Control Objects[M S96]

Asynchronous Procedure Call

I nterrupt

Process

Profile

Used to break into the execution of a specified thread and to
cause a procedure to be called in a specified processor mode.

Used to connect an interrupt source to an interrupt service
routine by means of an entry in an Interrupt Dispatch Table
(IDT). Each processor hasan IDT that is used to dispatch
interrupts that occur on that processor.

Represents the virtual address space and control information
necessary for the execution of a set of thread objects. A process
contains a pointer to an address map, a list of ready thread
containing thread objects, alist of threads belonging to the
process, the total accumulated time for al threads executing
within the process, and a base priority.

Used to measure the distribution of run time within a block of
code. Both user and system code can be profiled.

ININIYPIY (0T SMOPUIA €]°7 dn31]

(*939 ‘[opu0d AYILI ‘YA ‘SHI0]d
‘saauun) ‘sydnaadyur ‘Q/[‘sasnq) SAJeJId)Ul dICMPIBH

('TVH) J94eT uonoeaysqy a1empiey

[PUIIOIITIA SIIALIP NIAI(
J
LY 2ANNIAXF/HuduRgeuew 193[qQO SuId)SAS
[S— Jageuew Jojruow Jageuew [— I — it JAIINIIXY
Arourduwa ADUAIIJAI peaay) Hitoey 0007 SMOPUIA
MOPUM | [emarp £rmdag /ssoag | PUED Id’'1 Tdeue|\ O/
IdV 2ANNMOAXY]
A A A A A
pealy)
WIISAS spowr
[PUIY
Ipowr
TIA'TIALN heNp |
. | sT11a weysAsqng | 13830; 1oSeurw
’ | uoneondde JUIAY UuoISsdS
/SO 198() Odd UOSO TUIA
XISOd asand A JJ[[01U0D
sw)sAsqns T0yeondoy IDNIAIIS
JUIWIUOIIAUS] SIIIAIIS S3SS9004 J WI)SAS

suonednddy

11/16/00

4.4 WINDOWS 2000 THREAD AND SMP MANAGEMENT

Windows 2000 (W2K) process design is driven by the need to provide support for avariety of
operating system environments. Processes supported by different operating system environments
differ in anumber of ways, including the following:

- How processes are named

- Whether threads are provided within processes

- How processes are represented

- How process resources are protected

- What mechanisms are used for interprocess communication and synchronization
- How processes are related to each other

Accordingly, the native process structures and services provided by the W2K kernel are
relatively smple and general purpose, allowing each operating system subsystem to emulate a
particular process structure and functionality. Important characteristics of W2K processes are the
following:

- W2K processes are implemented as objects
- An executable process may contain one or more threads.
- Both process and thread objects have built-in synchronization capabilities.

Figure 4.12 illustrates the way in which a process relates to the resources it controls or uses.
Each processis assigned a security access token, called the primary token of the process. When a
user first logs on, W2K creates an access token that includes a security ID for the user. Every
process that is created by or runs on behalf of this user has a copy of this access token. W2K uses
the token to validate the user's ability to access secured objects or to perform restricted functions
on the system and on secured objects. The access token controls whether the process can change
its own attributes. In this case, the process does not have a handle opened to its access token. If
the process attempts to open such a handle, the security system determines whether thisis
permitted and therefore whether the process may change its own attributes.

Also related to the processis a series of blocks that define the virtual address space
currently assigned to this process. The process cannot directly modify these structures but must
rely on the virtual memory manager, which provides a memory-allocation service for the
process.

Finally, the process includes an object table, with handles to other objects known to this
process. One handle exists for each thread contained in this object. Figure 4.12 shows asingle
thread. In addition, the process has access to afile object and to a section object that defines a
section of shared memory.

Process and Thread Objects

The object-oriented structure of W2K facilitates the development of a general-purpose process
facility. W2K makes use of two types of process-related objects: processes and threads. A
processis an entity corresponding to a user job or application that owns resources, such as
memory, and opensfiles. A thread is a dispatchable unit of work that executes sequentially and is
interruptible, so that the processor can turn to another thread.

Each W2K processis represented by an object whose genera structure is shown in Figure
4.13a. Each process is defined by a number of attributes and encapsulates a number of actions, or
services, that it may perform. A process will perform a service upon receipt of the appropriate
message; the only way to invoke such a service is by means of messages to a process object that
provides that service. When W2K creates a new process, it uses the object class, or type, defined
for the W2K process as a template to generate a new object instance. At the time of creation,

-10

11/16/00

attribute values are assigned. Table 4.3 gives a brief definition of each of the object attributes for
a process object.

An W2K process must contain at |east one thread to execute. That thread may then create
other threads. In a multiprocessor system, multiple threads from the same process may execute in
parallel. Figure 4.13b depicts the object structure for a thread object, and Table 4.4 defines the
thread object attributes. Note that some of the attributes of a thread resemble those of a process.
In those cases, the thread attribute value is derived from the process attribute value. For example,
the thread processor affinity is the set of processors, in a multiprocessor system, that may
execute this thread; this set is equal to or a subset of the process processor affinity.

Note that one of the attributes of athread object is context. Thisinformation enables
threads to be suspended and resumed. Furthermore, it is possible to alter the behavior of athread
by altering its context when it is suspended.

Multithreading
W2K supports concurrency among processes because threads in different processes may execute
concurrently. Moreover, multiple threads within the same process may be allocated to separate
processors and execute concurrently. A multithreaded process achieves concurrency without the
overhead of using multiple processes. Threads within the same process can exchange
information through their common address space and have access to the shared resources of the
process. Threads in different processes can exchange information through shared memory that
has been set up between the two processes.

An object-oriented multithreaded process is an efficient means of implementing a server
application. For example, one server process can service anumber of clients. Each client request
triggers the creation of a new thread within the server.

Thread States
An existing W2K thread isin one of six states (Figure 4.14):

- Ready: May be scheduled for execution. The microkernel dispatcher keeps track of all
ready threads and schedules in priority order.

- Standby: A standby thread has been selected to run next on a particular processor. The
thread waits in this state until that processor is made available. If the standby thread's
priority is high enough, the running thread on that processor may be preempted in favor of
the standby thread. Otherwise, the standby thread waits until the running thread blocks or
finishesitstime dlice.

- Running: Once the microkernel performs athread or process switch, the standby thread
enters the running state and begins execution and continues execution until it is preempted,
exhausts its time dlice, blocks, or terminates. In the first two cases, it goes back to the ready
state.

- Waiting: A thread enters the waiting state when (1) it is blocked on an event (e.g., 1/0), (2)
it voluntarily waits for synchronization purposes, or (3) an environment subsystem directs
the thread to suspend itself. When the waiting condition is satisfied, the thread movesto the
Ready stateif al of itsresources are available.

- Transition: A thread enters this state after waiting if it is ready to run but the resources are
not available. For example, the thread's stack may be paged out of memory. When the
resources are available, the thread goes to the Ready state.

- Terminated: A thread can be terminated by itself, by another thread, or when its parent
process terminates. Once housekeeping chores are completed, the thread is removed from
the system, or it may be retained by the executive for future reinitialization.

Support for OS Subsystems
The general-purpose process and thread facility must support the particular process and thread
structures of the various OS clients. It is the responsibility of each OS subsystem to exploit the

-11

11/16/00

W2K process and thread features to emul ate the process and thread facilities of its corresponding
operating system. This area of process/thread management is quite complicated, and we give
only abrief overview here.

Process creation begins with arequest for a new process from an OS application. The
create-process request is issued from an application to the corresponding protected subsystem.
The subsystem, in turn, issues a process request to the W2K executive. W2K creates a process
object and returns a handle to that object to the subsystem. When W2K creates a process, it does
not automatically create athread. In the case of Win32 and OS/2, anew processis aways
created with athread. Therefore, for these operating systems, the subsystem calls the W2K
process manager again to create a thread for the new process, receiving a thread handle back
from W2K. The appropriate thread and process information are then returned to the application.
In the case of 16-hit Windows and POSI X, threads are not supported. Therefore, for these
operating systems, the subsystem obtains a thread for the new process from W2K so that the
process may be activated, but returns only process information to the application. The fact that
the application process isimplemented using a thread is not visible to the application.

When a new processis created in Win32 or OS/2, the new process inherits many of its
attributes from the creating process. However, in the W2K environment, this process creation is
done indirectly. An application client process issues its process creation request to the OS
subsystem; then a process in the subsystem in turn issues a process request to the W2K
executive. Because the desired effect is that the new process inherits characteristics of the client
process and not of the server process, W2K enables the subsystem to specify the parent of the
new process. The new process then inherits the parent's access token, quota limits, base priority,
and default processor affinity.

Symmetric Multiprocessing Support

W2K supports an SMP hardware configuration. The threads of any process, including those of
the executive, can run on any processor. In the absence of affinity restrictions, explained in the
next paragraph, the microkernel assigns a ready thread to the next available processor. This
assures that no processor isidle or is executing alower-priority thread when a higher-priority
thread is ready. Multiple threads from the same process can be executing simultaneously on
multiple processors.

As adefault, the microkernel uses the policy of soft affinity in assigning threads to
processors: the dispatcher tries to assign aready thread to the same processor it last ran on. This
helps reuse data still in that processor's memory caches from the previous execution of the
thread. It is possible for an application to restrict its thread execution to certain processors (hard
affinity).

-12

Table 4.3 Windows 2000 Process Object Attributes

Process |ID

Security Descriptor

Base priority

Default processor affinity

Quota limits

Execution time

I/O counters

VM operation counters

Exception/debugging ports

Exit status

A unique value that identifies the process to the operating system.

Describes who created an object, who can gain access to or use the
object, and who is denied access to the object.

A baseline execution priority for the process's threads.

The default set of processors on which the process's threads can
run.

The maximum amount of paged and nonpaged system memory,
paging file space, and processor time a user's processes can use.

The total amount of time all threads in the process have executed.

Variables that record the number and type of I/O operations that
the process's threads have performed.

Variables that record the number and types of virtual memory
operations that the process's threads have performed.

Interprocess communication channels to which the process
manager sends a message when one of the process's threads causes

an exception.

The reason for a process's termination.

Table 4.4 Windows 2000 Thread Object Attributes

Thread ID

Thread context

Dynamic priority
Base priority

Thread processor affinity

Thread execution time

Alert status

Suspension count

Impersonation token

Termination port

Thread exit status

A unique value that identifies athread when it calls a server.

The set of register values and other volatile data that defines the
execution state of athread.

The thread's execution priority at any given moment.
The lower limit of the thread's dynamic priority.

The set of processors on which the thread can run, which isa
subset or all of the processor affinity of the thread's process.

The cumulative amount of time a thread has executed in user mode
and in kernel mode.

A flag that indicates whether the thread should execute an
asynchronous procedure call.

The number of times the thread's execution has been suspended
without being resumed.

A temporary access token allowing athread to perform operations
on behalf of another process (used by subsystems).

An interprocess communication channel to which the process
manager sends a message when the thread terminates (used by
subsystems).

The reason for a thread's termination.

S32.IN0SAY S} PUB SSA0IJ (00T SMOPUIA 7T N3]

o go[puey
1 1
o dIPuCH
L
o [oIpuEy
1 1
$193(qo 31qe], 199[q0
dqe[ieAY
— — — $59001d
uondridsap ddeds ssdappe [enyaiA
udo)

$S300Y

§193[q () PBIIY], PU® SSID0IJ ()07 SMOPUIA\ €T 9In3L]

193[qo peaxy, (q)

110d uoneUIWLIY) IISISAY
119k peaIy) 1S9,

peaIy) 19y

ownsay

puadsng

1XJU0D 39S

1XJU0D 190)

peaIy) AeUILLIY],

peaIy) JuaLIn))
UOIBULIOJUT PBAIY) 1S
UOIBWLIOJUT PRAIY) A1onQ)
peaayy uadQ

peaIy) Aear)

SNJe)s 31X peaIy],
110d uoneUIULIA,

uaYy0) uoneuosiaduy
Junod uorsuadsng

snje)s 1Y

QWIN UOTINOAXA PBAIY],
Ajrurgye 10ss9201d pearyy,
Auoud aseg

Koud orwreudq
1XJUO0D PBAIY],

dIl pea1y],

peaayy,

SIIIAIIS

sonqLy
Apog 19[q0

ad4J, 193(q0

133[q0 $S3%0.1(()

$s9001d QreUTUIA,

$$9001d juorIn))
uoneuLIojuI $s3201d 199
uoneuLojur ssad01d £1anQ)
ssa001d uadQ

ssao01d Qea1)

snje)s Xy
sy10d Sui33ngop/uondooxyg
s19Junod uonerado WA
SIIUNOJ /]

QuIn) UOTNJAXH

syrun| eyong)

Aurgge 10ss9001d Jnejoq
Koud aseq

10)d119s9(AIINd9S

Al $s001g

$S3201J

SIJIAIIS

saquNy
Apog 19:(qQ

adA], 193(q0

S3)B)S PIIY], (00T SMOPUIAy P °p 9INSL]

Jjqeuuny] JON
I[IqRB[IBAY JON 92IN0SNY
pajeuruId |, sunIeAn i | uonisuedJ,
A puadsng
oI J[IqEB[IBAY 9DIN0SI dIqe[IBAY
djeUILII |, AWINSAY Po[qu) 92IN0SAY
suruuny| » Apeay
parduwdoag
PUMS Sl
Aqpues Vb

dqeuuny

11/16/00

6.9 WINDOWS 2000 CONCURRENCY MECHANISM S

Windows 2000 (W2K) provides synchronization among threads as part of the object architecture.
The mechanism used by the W2K' executive to implement synchronization facilities is the family
of synchronization objects, which consists of the following:

- Process

- Thread

- File

- Console input

- File change notification
- Mutex

- Semaphore

- Event

- Waitable timer

The first four object types in the foregoing list have other uses but also may be used for
synchronization. The remaining object types are specifically designed to support
synchronization.

Each synchronization object instance can be in either asignaled or unsignaled state. A
thread can be suspended on an object in an unsignaled state; the thread is released when the
object enters the signaled state. The mechanism is straightforward: a thread issues a wait request
to the W2K executive, using the handle of the synchronization object. When an object enters the
signaled state, the W2K executive releases all thread objects that are waiting on that
synchronization object.

Table 6.3 summarizes the events that cause each object type to enter the signaled state and
the effect it has on waiting threads.

The mutex object is used to enforce mutually exclusive access to aresource, allowing only
one thread object at atime to gain access. It therefore functions as a binary semaphore. When the
mutex object enters the signaled state, only one of the threads waiting on the mutex is released.
Mutexes can be used to synchronize threads running in different processes.

Like mutexes, semaphores may be shared by threads in multiple processes. The W2K
semaphore is the classic counting semaphore.

The waitable timer is anew kernel object provided in Windows NT 4.0. In essence, the
timer signals at a certain time and/or at regular intervals.

-13

"uoIeZIuoJyduAs Jo asodind a|os 8yl Jo} 1S1Xe Y1 S199100 0] puodsaliod SMOU papeys B10N

salldxe awn Jo

peseapl ||V eAlBluUIawW Jo SoALe awn S afiessed ay) sp.aodal eyl BIUN0d Jowi] ajqelrem
p2.1IN220 Sey Uan

paseapl ||V JUSAB B SIS Pealy L WieISAs e Jey) Juswisounouue uy WA
82IN0sa
B asn Ued Jey) SpeaJy) Jo ,sgquinu

pasespl ||V 0.9z 0} sdoJp JUNoI si1oydewss 3Y1 sale|nba. eyl B1unod v aloydewss
SIUBLLUOJIAUG Z/SO PuUe ZEUIM
JURINW BY) Sosea P 3} 10} Sa11l|Icedes uosn X

pases p. peaJyl suQ peaJyl JBY1o Jo peasyl BuiumQO eninw sspinoid eyl wsiueyosw XN

199[q0 S1y} JoelBILIO JB) |1} SBydTeW 'sobueyd UOIROIION

pesespl pealylauQ eyl weisAs 8|1} Ul SIndoo abiuey)d welsAs 3|14 Aue jo uoedlynou v abueyd a4
(uoreoljdde SOA-SIN
Ue 10} O/| Usalos a|puey 01 pasn

pases jpJ peaJyl auQ Butssaooud Joja|ge|ene s indu] “6'3) “lB}Ng USSIIS MOPUIM 1X3) ndu| ajosuo)
301nep O/I

pasespl ||V sop|dwod uoirsedo O/ 10 3|1} pauado ue Jo aoueisul Uy a|H
ssao0ud

pesespl ||V Saleuiwe) pealy L e uiyym Anus a|geindsxe uy pesiy L
weiboid ay) un. 0] palinbal
S92JN0Sa.J pue adeds SsaJppe syl

pasespl ||V Saleu W] pPealy) 1se Buipnoul ‘uoiredoAul welboid v SS900.d

Spes .y L Bunre uo 109413 USY/W\ 37e1S paeubis 01 18S uoniued adA1 19(q0

$109 [qO uo11eZ1U0 IYOUAS 000Z SMOPUIA £98]|0e L

11/16/00

8.5 WINDOWS 2000 MEMORY MANAGEMENT

The Windows 2000 (W2K) virtual memory manager controls how memory is alocated and how
paging is performed. The memory manager is designed to operate over avariety of platforms and
use page sizes ranging from 4 Kbytes to 64 Kbytes. Intel, PowerPC, and MIPS platforms have
4096 bytes per page and DEC Alpha platforms have 8192 bytes per page.

W2K Virtual AddressMap
Each W2K user process sees a separate 32-bit address space, allowing 4 Gbytes of memory per
process. By default, a portion of this memory is reserved for the operating system, so each user
actualy has 2 Gbyte of available virtual address space and all processes share the same 2 Gbytes
of system space. There an option that alows user space to be increased to 3 Gbytes, leaving 1
Gbyte for system space. The W2K documentation indicates that this feature is intended to
support large memory intensive applications on servers with multiple gigabytes of RAM, and
that the use of the larger address space can dramatically improve performance for applications
such as decision support or data mining.

Figure 8.25 shows the default virtual address space seen by a user process. It consists of
four regions:

- 0x00000000 to OXO000FFFF: Set aside to help programmers catch NUL L-pointer
assignments.

- 0x00010000 to Ox7FFEFFFF: Available user address space. This space is divided into

ages that may be loaded into main memory.

- Ox7FFF0000 to Ox7FFFFFFF: A guard page inaccessible to the user. This page makes it
easier for the operating system to check on out-of-bounds pointer references.

- 0x80000000 to OXFFFFFFFF: System address space. This 2-Gbyte process is used for the
W2K Executive, microkernel, and device drivers.

W2K Paging

When a process is created, it can in principle make use of the entire user space of 2 Gbytes
(minus 128 kbyte). This space is divided into fixed-size pages, any of which can be brought into
main memory. In practice, to smplify the accounting, a page can be in one of three states:

- Available: Pages not currently used by this process.

- Reserved: A set of contiguous pages that the virtual memory manager sets aside for a
process but does not count against the process's memory quota until used. When a process
needs to write to memory, some of the reserved memory is committed to the process.

- Committed: Pages for which the virtual memory manager has set aside space in its paging
file (e.g., the disk file to which it writes pages when removing them from main memory).

The distinction between reserved and committed memory is useful because it (1) minimizes
the amount of disk space set aside for a particular process, keeping that disk space free for other
processes; and (2) enables athread or process to declare an amount of memory that can be
quickly allocated as needed.

The resident set management scheme used by W2K is variable allocation, local scope (see
Table 8.4). When aprocessisfirst activated, it is assigned a certain number of page frames of
main memory as its working set. When a process references a page not in memory, one of the
resident pages of that processis swapped out and the new page is brought in. Working sets of
active processes are adjusted using the following general conventions:

- When main memory is plentiful, the virtual memory manager allows the resident sets of
active processes to grow. To do this, when a page fault occurs, a new page is brought into

-14

11/16/00

memory but no older page is swapped out, resulting in an increase of the resident set of that

process by one page.
- When memory becomes scarce, the virtual memory manager recovers memory for the

system by moving less recently used pages out of the working sets of active processes,
reducing the size of those resident sets.

-15

64-Kbyte region for _O> A
NULL-pointer assignments

(inaccessible)
2-Gbyte user
address space
(unreserved, usable)
64-Kbyte region for > v
bad pointer assignments 4
(inaccessible)

2-Gbyte region for
the operating system
(inacessible)

O0xFFFFFFFF v

Figure 8.25 Windows 2000 Default Virtual Address Space

11/16/00

10.5 WINDOWS 2000 SCHEDULING

Windows 2000 (W2K) is designed to be as responsive as possible to the needs of asingle user in
a highly interactive environment or in the role of a server. W2K implements a preemptive
scheduler with aflexible system of priority levels that includes round-robin scheduling within
each level and, for some levels, dynamic priority variation on the basis of their current thread
activity.

Processand Thread Priorities

Prioritiesin W2K are organized into two bands, or classes: real time and variable. Each of these
bands consists of 16 priority levels. Threads requiring immediate attention are in the real-time
class, which includes functions such as communications and real-time tasks.

Overal, because W2K makes use of a priority-driven preemptive scheduler, threads with
real-time priorities have precedence over other threads. On a uniprocessor, when athread
becomes ready whose priority is higher than the currently executing thread, the lower-priority
thread is preempted and the processor given to the higher-priority thread.

Priorities are handled somewhat differently in the two classes (Figure 10.12). In the real-
time priority class, all threads have afixed priority that never changes. All of the active threads
at agiven priority level arein around-robin queue. In the variable priority class, athread's
priority begins at someinitial assigned value and then may change, up or down, during the
thread's lifetime. Thus, there is a FIFO queue at each priority level, but a process may migrate to
one of the other queues within the variable priority class. However, athread at priority level 15
cannot be promoted to level 16 or any other level in the real-time class.

Theinitia priority of athread in the variable priority classis determined by two quantities:
process base priority and thread base priority. One of the attributes of a process object is process
base priority, which can take on any value from 0 through 15. Each thread object associated with
a process object has a thread base priority attribute that indicates the thread's base priority
relative to that of the process. The thread's base priority can be equal to that of its process or
within two levels above or below that of the process. So, for example, if a process has a base
priority of 4, and one of its threads has a base priority of —1, then theinitia priority of that thread
is3.

Once athread in the variable priority class has been activated, its actual priority, referred to
as the thread's dynamic priority, may fluctuate within given boundaries. The dynamic priority
may never fall below the lower range of the thread's base priority and it may never exceed 15.
Figure 10.13 gives an example. The process object has a base priority attribute of 4. Each thread
object associated with this process object must have an initial priority of between 2 and 6. The
dynamic priority for each thread may fluctuate in the range from 2 through 15. If athread is
interrupted because it has used up its current time quantum, the W2K executive lowersits
priority. If athread isinterrupted to wait on an I/O event, the W2K executive raisesits priority.
Thus, processor-bound threads tend toward lower priorities and 1/0-bound threads tend toward
higher priorities. In the case of 1/0-bound threads, the executive raises the priority more for
interactive waits (e.g., wait on keyboard or display) than for other types of 1/0 (e.g., disk 1/0O).
Thus, interactive threads tend to have the highest priorities within the variable priority class.

Multiprocessor Scheduling

When W2K isrun on asingle processor, the highest-priority thread is always active unlessit is
waiting on an event. If there is more than one thread that has the highest priority, then the
processor is shared, round robin, among all the threads at that priority level. In a multiprocessor
system with N processors, the (N — 1) highest priority threads are always active, running
exclusively on the (N — 1) extra processors. The remaining, lower-priority, threads share the
single remaining processor. For example, if there are three processors, the two highest-priority
threads run on two processors, while all remaining threads run on the remaining processor.

-16

11/16/00

The foregoing discipline is affected by the processor affinity attribute of athread. If a
thread is ready to execute but the only available processors are not in its processor affinity set,
then that thread is forced to wait, and the executive schedules the next avail able thread.

-17

A Highest (31) . =

Real-time —_—>
Priority
Classes
\J Lowest (16) . .
A Highest (15) ——> —>
Variable
Priority
Classes
\ / Lowest (0) ——> —>

Figure 10.12 Windows 2000 Thread Dispatching Priorities

15 [

14 |

13 [

12 [

1m [

10 [

o [~

s [~

-

6 | highest

5 above normal

4 base priority normal

3 L below normal

2 lowest

-

0 [
Process Thread's Base Thread's Dynamic
Priority Priority Priority

Figure 10.13 Example of Windows 2000 Priority Relationship

11/16/00

11.9 WINDOWS 2000 I/O

Figure 11.16 shows the Windows 2000 (W2K) 1/0 manager. The 1/O manager is responsible for
al 1/0 for the operating system and provides a uniform interface that all types of drivers can call.

Basic /O Modules
The I/O manager consists of four modules:

- Cache manager: The cache manager handles caching for the entire I/O subsystem. The
cache manager provides a caching service in main memory to al file systems and network
components. It can dynamically increase and decrease the size of the cache devoted to a
particular activity as the amount of available physical memory varies. Cache manager
includes two servicesto improve overal performance:

—L azy write: The system records updates in the cache only and not on disk. Later, when
demand on the processor is low, the cache manager writes the changesto disk. If a
particular cache block is updated in the meantime, there is a net savings.

—L azy commit: Thisissimilar to lazy write for transaction processing. Instead of
immediately marking a transaction as successfully completed, the system caches the
committed information and later writes it to the file system log by a background process.

- Filesystem drivers. The I/O manager treats afile system driver asjust another device
driver and routes message for certain volumes to the appropriate software driver for that
device adapter.

- Network drivers: W2K includes integrated networking capabilities and support for
distributed applications.

- Hardwar e devicedrivers: These drivers access the hardware registers of the peripheral
devices through entry pointsin W2K Executive dynamic link libraries. A set of these
routines exists for every platform that W2K supports; because the routine names are the
same for al platforms, the source code of W2K device driversis portable across different
processor types.

Asynchronous and Synchronous1/O
W2K offers two modes of 1/0O operation: asynchronous and synchronous. The asynchronous
mode is used whenever possible to optimize application performance. With asynchronous I/0, an
application initiates an I/O operation and then can continue processing while the 1/0 request is
fulfilled. With synchronous 1/0, the application is blocked until the 1/O operation completes.
Asynchronous I/0 is more efficient, from the point of view of the calling thread, because it
allows the thread to continue execution while the 1/0 operation is queued by the 1/0 manager and
subsequently performed. However, the application that invoked the asynchronous I/0O operation
needs some way to determine when the operation is complete. W2K provides four different
techniques for signaling 1/0 compl etion:

- Signaling a device kernel object: With this approach, an indicator associated with a
device object is set when an operation on that object is complete. The thread that invoked
the 1/O operation can continue to execute until it reaches a point where it must stop until
the I/O operation is complete. At that point, the thread can wait until the operation is
complete, and then continue. This technique is ssmple and easy to use but is not appropriate
for handling multiple 1/0O requests. For example, if athread needs to perform multiple
simultaneous actions on asingle file, such as reading from one portion and writing to
another portion of the file, with this technique, the thread could not distinguish between the
completion of the read and the completion of the write. It would simply know that some
requested 1/O operation on this file was compl ete.

-18

11/16/00

- Signaling an event kernel object: This technique allows multiple ssmultaneous 1/0
requests against a single device or file. The thread creates an event for each request. L ater,
the thread can wait on a single one of these requests or on the entire collection of requests.

- Alertable I/O: This technique makes use of a queue associated with athread, known as the
asynchronous procedure call (APC) queue. In this case, the thread makes I/O requests, and
the I/O manager places the results of these requestsin the calling thread's APC queue.

- 1/O completion ports: Thistechniqueisused on aW2K server to optimize the use of
threads. In essence, a pool of threadsis available for use so that it is not necessary to create
anew thread to handle a new request.

Software RAID
W2K supports two sorts of RAID configurations, defined in [MS96] as follows:

- Hardware RAID: Separate physical disks combined into one or more logical disks by the
disk controller or disk storage cabinet hardware.

- Software RAID: Noncontiguous disk space combined into one or more logical partitions
by the fault-tolerant sofware disk driver, FTDISK.

In hardware RAID, the controller interface handles the creation and regeneration of
redundant information. The software RAID, available on W2K Server, implements the RAID
functionality as part of the operating system and can be used with any set of multiple disks. The
software RAID facility implements RAID 1 and RAID 5. In the case of RAID 1 (disk mirroring),
the two disks containing the primary and mirrored partitions may be on the same disk controller
or different disk controllers. The latter configuration is referred to as disk duplexing.

-19

I/O Manager

Cache
Manager

File System
Drivers

Network
Drivers

Hardware
Device Drivers

Figure 11.16 Windows 2000 I/O Manager

11/16/00

12.8 WINDOWS 2000 FILE SYSTEM

Windows 2000 (W2K) supports a number of file systems, including the file allocation table
(FAT) that runs on Windows 95, MS-DOS, and OS/2. But the developers of W2K also designed
anew file system, the W2K File System (NTFS), that is intended to meet high-end requirements
for workstations and servers. Examples of high-end applications:

- Client/server applications such asfile servers, compute servers, and database servers
- Resource-intensive engineering and scientific applications
- Network applications for large corporate systems

This section provides an overview of NTFS.

Key Featuresof NTFS
NTFSisaflexible and powerful file system built, as which shall see, on an elegantly ssimplefile
system model. The most noteworthy features of NTFS include:

- Recoverability: High on the list of requirements for the new W2K file system was the
ability to recover from system crashes and disk failures. In the event of such failures, NTFS
is able to reconstruct disk volumes and return them to a consistent state. It does this by
using atransaction processing model for changes to the file system; each significant change
istreated as an atomic action that is either entirely performed or not performed at all. Each
transaction that was in process at the time of afailure is subsequently backed out or
brought to completion. In addition, NTFS uses redundant storage for critical file system
data, so that failure of adisk sector does not cause the loss of data describing the structure
and status of the file system.

- Security: NTFS uses the W2K object model to enforce security. An openfileis
implemented as afile object with a security descriptor that defines its security attributes.

- Largedisksand largefiles: NTFS supports very large disks and very large files more
efficiently than most other file systems, including FAT.

- Multiple data streams. The actual contents of afile are treated as a stream of bytes. In
NTFSit is possible to define multiple data streams for asingle file. An example of the
utility of thisfeatureisthat it allows W2K to be used by remote Macintosh systemsto store
and retrieve files. On Macintosh, each file has two components: the file data and a resource
fork that contains information about the file. NTFS treats these two components as two data
streams.

- General indexing facility: NTFS associates a collection of attributes with each file. The
set of file descriptions in the file management system is organized as arelational database,
so that files can be indexed by any attribute.

NTFSVolumeand File Structure
NTFS makes use of the following disk storage concepts:

- Sector: The smallest physical storage unit on the disk. The data size in bytesis a power of
2 and isamost always 512 bytes.

- Cluster: One or more contiguous (next to each other on the same track) sectors. The cluster
Sizein sectorsisa power of 2.

- Volume: A logical partition on adisk, consisting of one or more clusters and used by afile
system to allocate space. At any time, avolume consists of afile system information, a
collection of files, and any additional unallocated space remaining on the volume that can
be allocated to files. A volume can be al or aportion of asingle disk or it can extend

-20

11/16/00

across multiple disks. If hardware or software RAID 5 is employed, a volume consists of
stripes spanning multiple disks. The maximum volume size for NTFSis 254 bytes.

The cluster is the fundamental unit of allocation in NTFS, which does not recognize
sectors. For example, suppose each sector is 512 bytes and the system is configured with two
sectors per cluster (one cluster = 1K bytes). If auser creates afile of 1600 bytes, two clusters are
allocated to thefile. Later, if the user updates the file to 3200 bytes, another two clusters are
allocated. The clusters alocated to afile need not be contiguous; it is permissible to fragment a

file on the disk. Currently, the maximum file size supported by NTFSis 2°2 clusters, which is

equivalent to a maximum of 2*8 bytes.

The use of clusters for allocation makes NTFS independent of physical sector size. This
enables NTFS to support easily nonstandard disks that do not have a 512-byte sector size, and to
support efficiently very large disks and very large files by using alarger cluster size. The
efficiency comes from the fact that the file system must keep track of each cluster alocated to
each file; with larger clusters, there are fewer items to manage.

Table 12.6 shows the default cluster sizesfor NTFS. The defaults depends on the size of
the volume. The cluster size that is used for a particular volume is established by NTFS when the
user requests that a volume be formatted.

NTFS Volume L ayout

NTFS uses aremarkably ssimple but powerful approach to organizing information on a disk
volume. Every element on avolumeisafile, and every file consists of a collection of attributes.
Even the data contents of afileistreated as an attribute. With this simple structure, afew
general-purpose functions suffice to organize and manage afile system.

Figure 12.14 shows the layout of an NTFS volume, which consists of four regions. The first
few sectors on any volume are occupied by the partition boot sector (althoughitiscalled a
sector, it can be up to 16 sectors long), which contains information about the volume layout and
the file system structures as well as boot startup information and code. Thisis followed by the
master filetable (MFT), which contains information about all of the files and folders
(directories) on this NTFS volume as well as information about available unallocated space. In
essence, the MFT isalist of all contents on this NTFS volume, organized as a set of rowsin a
relational database structure.

Following the MFT isaregion, typically about 1 Mbyte in length, containing system files.
Among the filesin this region are the following:

- MFT2: A mirror of thefirst three rows of the MFT, used to guarantee access to the MFT in
the case of a single-sector failure

- Logfile: A list of transaction steps used for NTFS recoverability

- Cluster bit map: A representation of the volume, showing which clusters arein use

- Attribute definition table: Defines the attribute types supported on this volume and
indicates whether they can be indexed and whether they can be recovered during a system
recovery operation

Master File Table

The heart of the W2K file system isthe MFT. The MFT is organized as atable of variable-
length rows, called records. Each row describes afile or afolder on this volume, including the
MFT itself, which istreated as afile. If the contents of afile are small enough, then the entirefile
islocated in arow of the MFT. Otherwise, the row for that file contains partial information and
the remainder of the file spills over into other available clusters on the volume, with pointers to
those clustersin the MFT row of that file.

Each record in the MFT consists of a set of attributes that serve to define the file (or folder)
characteristics and the file contents. Table 12.7 lists the attributes that may be found in arow,
with the required attributes indicated by shading.

-21

11/16/00

Recover ability
NTFS makes it possible to recover the file system to a consistent state following a system crash
or disk failure. The key elements that support recoverability are (Figure 12.15):

- 1/0O manager: Includes the NTFS driver, which handles the basic open, close, read, write
functions of NTFS. In addition, the software RAID module FTDISK can be configured for
use.

- Logfile service: Maintainsalog of disk writes. Thelog file is used to recover an NTFS-
formatted volume in the case of a system failure.

- Cache manager: Responsible for caching file reads and writes to enhance performance.
The cache manager optimizes disk I/0O by using the lazy write and lazy commit techniques
described in Section 11.8.

- Virtual memory manager: The NTFS accesses cached files by mapping file references to
virtual memory references and reading and writing virtual memory.

It isimportant to note that the recovery procedures used by NTFS are designed to recover
file system data, not file contents. Thus, the user should never lose a volume or the directory/file
structure of an application because of a crash. However, user data are not guaranteed by the file
system. Providing full recoverability, including user data, would make for a much more elaborate
and resource-consuming recovery facility.

The essence of the NTFS recovery capability islogging. Each operation that alters afile
system istreated as a transaction. Each suboperation of atransaction that altersimportant file
system data structuresis recorded in alog file before being recorded on the disk volume. Using
the log, a partially completed transaction at the time of a crash can later be redone or undone
when the system recovers.

In general terms, these are the steps taken to ensure recoverability, as described in
[CUST9]:

NTFSfirst callsthe log file system to record in the log file in the cache any transactions
that will modify the volume structure.

NTFS modifies the volume (in the cache).

The cache manager callsthe log file system to prompt it to flush the log file to disk.
Oncethelog file updates are safely on disk, the cache manager flushes the volume
changesto disk.

Eal N\

-22

Table12.6 Windows NTFS Partition and Cluster Sizes

Volume Size Sectors per Cluster Cluster Size
£ 512 Mbyte 1 512 bytes
512 Mbyte - 1 Gbyte 2 1K
1 Gbyte - 2 Gbyte 4 2K
2 Gbyte - 4 Gbyte 8 4K
4 Ghyte - 8 Ghyte 16 8K
8 Gbyte - 16 Gbyte 32 16K
16 Gbyte - 32 Ghyte 64 32K

> 32 Ghyte 128 64K

Table12.7 Windows NTFS File and Directory Attribute Types

Attribute Type Description

Standard information Includes access attributes (read-only, read/write, etc.); time
stamps, including when the file was created or last modified;
and how many directories point to the file (link count).

Attribute list A list of attributes that make up the file and the file reference
of the MFT file record in which each attribute is located. Used
when all attributes do not fit into asingle MFT file record.

File name A file or directory must have one or more names.
Security descriptor Specifies who owns the file and who can accessit.
Data The contents of the file. A file has one default unnamed data

attribute and may have one or more named data attributes.

Index root Used to implement folders.
Index alocation Used to implement folders.
Volume information Includes volume-related information, such as the version and

name of the volume.

Bitmap Provides a map representing records in use on the MFT or
folder.

Note: shaded rows refer to required file attributes; the other attributes are optional.

BaIy ILd

noLe dwn[oA SAIN HI°CI N3

S9ItA
WI)SAS

S1qBL 31 IISEA

10393
jooq
uonned

[+61.SND] stusuodwio) SAIN SMOPUIA ST'CT NS

YSIp 3y}
ALIM/PEIY

TAL(SI

awmnjoA padrys
J0 PIIOLITUU
B 9JLIM/PeY

JIALI(

Pl Jueado], yne g

JaZeuBA
AIOWRA] [BN)IIA

4

3Yded 3Y) ysnyj Jo 3y
paddew 3y) $S330Y

Axrowrdux

oyur sIp Jageuey

woJj ejep peo|

aYPe)

BRALIQ SALN

ayoed Y MO—
) NMIM oy ysnp g

Iy ¥y
ALIM/peAY

| IAIIS

p || 311 8o

Jdgeue\ O/1

uondesued) 3y} 30|

11/16/00

13.5 WINDOWS 2000 CLUSTER SERVER

Windows 2000 (W2K) Cluster Server (formerly code named Wolfpack) is a shared-nothing
cluster, in which each disk volume and other resource is owned by a single system at atime.
The W2K Cluster Server design makes use of the following concepts:

- Cluster Service: The collection of software on each node that manages all cluster-specific
activity.

- Resource: Anitem managed by the cluster service. All resources are objects representing
actual resourcesin the system, including physical hardware devices such as disk drives and
network cards and logical items such aslogical disk volumes, TCP/IP addresses, entire
applications, and databases.

- Online: A resourceis said to be online at a node when it is providing service on that
specific node.

- Group: A collection of resources managed as single unit. Usually, a group contains all of
the elements needed to run a specific application and for client systems to connect to the
service provided by that application.

The concept of group is of particular importance. A group combines resources into larger
unitsthat are easily managed, both for failover and load balancing. Operations performed on a
group, such as transferring the group to another node, automatically affect all of the resourcesin
that group. Resources are implemented as dynamically linked libraries (DLLs) and managed by a
resource monitor. The resource monitor interacts with the cluster service viaremote procedure
calls and responds to cluster service commands to configure and move resource groups.

Figure 13.16 depicts the W2K Cluster Server components and their relationshipsin asingle
system of a cluster. The node manager is responsible for maintaining this node's membership in
the cluster. Periodically, it sends heartbeat messages to the node managers on other nodes in the
cluster. In the event that one node manager detects aloss of heartbeat messages from another
cluster node, it broadcasts a message to the entire cluster causing all members to exchange
messages to verify their view of current cluster membership. If a node manager does not
respond, it is removed from the cluster and its active groups are transferred to one or more other
active nodes in the cluster.

The configuration database manager maintains the cluster configuration database. The
database contains information about resources and groups and node ownership of groups. The
database managers on each of the cluster nodes cooperate to maintain a consistent picture of
configuration information. Fault-tolerant transaction software is used to assure that changes in
the overall cluster configuration are performed consistently and correctly.

The resour ce manager /failover manager makes all decisions regarding resource groups
and initiates appropriate actions such as startup, reset, and failover. When failover is required,
the failover managers on the active node cooperate to negotiate a distribution of resource groups
from the failed system to the remaining active systems. When a system comes back up after a
failure, the failover manager can decide to move some groups back to this system. In particular,
any group may be configured with a preferred owner. If that owner fails and then restarts, the
group is moved back to the node in arollback operation.

The event processor connects all of the components of the cluster service, handles
common operations, and controls cluster service initialization. The communications manager
manages message exchange with all other nodes of the cluster. The global update manager
provides a service used by other components within the cluster service.

-23

[L6IOHS] WeaSe1q YOo[g 19AIS ISN) (00T SMOPUIA, 9T €T dIn31]

ddy TId TId TId
AIEME-UON 921N0SoY 921N0S3Y 921N0S3Y
ddy [ed1307] [BdIsAYq

FRUINEITT)
JUAMISDUD
224n0S2Yy AA
SIO)IUOTA] DINOSIY
e T1d
SOpON R Jageury 321N0SdY
< 7 QQ<

nYO , uoNBIIUNUIWO))

JdgeuR\
aseqele(

JageuRIA
PUIIS ™ ~ repd() [eqor
dpsnyy) 0000 T T —— =T 7

TI1d IdV BIsnp) <

S[00], JududGeUR]A] J9)SN])

11/16/00

15.6 WINDOWS 2000 SECURITY

A good example of the access control concepts we have been discussing is the Windows 2000
(W2K) access control facility, which exploits object-oriented concepts to provide a powerful and
flexible access control capability.

W2K provides a uniform access control facility that applies to processes, threads, files,
semaphores, windows, and other objects. Access control is governed by two entities: an access
token associated with each process and a security descriptor associated with each object for
which interprocess access is possible.

Access Control Scheme
When auser logs on to an W2K system, W2K uses a name/password scheme to authenticate the
user. If the logon is accepted, a processis created for the user and an access token is associated
with that process object. The access token, whose details are described later, include a security
ID (SID), which isthe identifier by which this user is known to the system for purposes of
security. When any additional processes are spawned by theinitial user process, the new process
object inherits the same access token.

The access token serves two purposes.

1. It keepsall necessary security information together to speed access validation. When any
process associated with a user attempts access, the security subsystem can make use of
the token associated with that process to determine the user's access privileges.

2. It allows each process to modify its security characteristics in limited ways without
affecting other processes running on behalf of the user.

The chief significance of the second point has to do with privileges that may be associated
with a user. The access token indicates which privileges a user may have. Generally, the tokenis
initialized with each of these privilegesin adisabled state. Subsequently, if one of the user's
processes needs to perform a privileged operation, the process may enable the appropriate
privilege and attempt access. It would be undesirable to keep all of the security information for a
user in one systemwide place, because in that case enabling a privilege for one process enables it
for al of them.

Associated with each object for which interprocess accessis possible is a security
descriptor. The chief component of the security descriptor is an access control list that specifies
access rights for various users and user groups for this object. When a process attempts to access
this object , the SID of the process is matched against the access control list of the object to
determine if access will be allowed.

When an application opens a reference to a securable object, W2K verifies that the object's
security descriptor grants the application's user access. If the check succeeds, W2K caches the
resulting granted access rights.

An important aspect of W2K security is the concept of impersonation, which simplifies the
use of security in aclient/server environment. If client and server talk through a RPC connection,
the server can temporarily assume the identity of the client so that it can evaluate a request for
access relative to that client'srights. After the access, the server revertsto its own identity.

Access Token
Figure 15.11a shows the general structure of an access token, which includes the following
parameters:

- Security ID: Identifies auser uniquely across al of the machines on the network. This
generally corresponds to a user's logon name.

-24

11/16/00

- Group SIDs: A list of the groups to which this user belongs. A group is simply a set of
user IDsthat are identified as a group for purposes of access control. Each group has a
unique group SID. Access to an object can be defined on the basis of group SIDs,
individual SIDs, or a combination.

- Privileges. A list of security-sensitive system services that this user may call. An example
is create token. Another example is the set backup privilege; users with this privilege are
allowed to use a backup tool to back up files that they normally would not be able to read.
Most users will have no privileges.

- Default owner: If this process creates another object, thisfield specifies who is the owner
of the new object. Generally, the owner of the new process is the same as the owner of the
spawning process. However, auser may specify that the default owner of any processes
spawned by this processisagroup SID to which this user belongs.

- Default ACL: Thisisan initial list of protections applied to the objects that the user
creates. The user may subsequently alter the ACL for any object that it owns or that one of
its groups owns.

Security Descriptors
Figure 15.11b shows the general structure of a security descriptor, which includes the following
parameters:

- Flags: Defines the type and contents of a security descriptor. The flags indicate whether or
not the SACL and DACL are present, whether or not they were placed on the object by a
defaulting mechanism, and whether the pointers in the descriptor use absolute or relative
addressing. Relative descriptors are required for objects that are transmitted over a
network, such asinformation transmitted in a RPC.

- Owner: The owner of the object can generally perform any action on the security
descriptor. The owner can be an individual or agroup SID. The owner has the authority to
change the contents of the DACL.

- System Access Control List (SACL): Specifies what kinds of operations on the object
should generate audit messages. An application must have the corresponding privilege in
its access token to read or write the SACL of any object. Thisisto prevent unauthorized
applications from reading SACL s (thereby learning what not to do to avoid generating
audits) or writing them (to generate many audits to cause an illicit operation to go
unnoticed).

- Discretionary Access Control List (DACL): Determines which users and groups can
access this object for which operations. It consists of alist of access control entries (ACES).

When an object is created, the creating process can assign as owner its own SID or any
group SID in its access token. The creating process cannot assign an owner that is not in the
current access token. Subsequently, any process that has been granted the right to change the
owner of an object may do so, but again with the same restriction. The reason for the restriction
isto prevent a user from covering his tracks after attempting some unauthorized action.

Let uslook in more detail at the structure of access control lists, because these are at the
heart of the W2K access control facility (Figure 15.11c). Each list consists of an overall header
and a variable number of access control entries. Each entry specifies an individual or group SID
and an access mask that defines the rights to be granted to this SID. When a process attempts to
access an object, the object manager in the W2K executive reads the SID and group SIDs from
the access token and then scans down the object's DACL. If amatch isfound, that isif an ACE is
found with a SID that matches one of the SIDs from the access token, then the process has the
access rights specified by the access mask in that ACE.

Figure 15.12 shows the contents of the access mask. The least significant 16 bits specify
access rights that apply to a particular type of object. For example, bit O for afile object is
File Read Data access and bit O for an event object is Event_Query Status access.

-25

11/16/00

The most significant 16 bits of the mask contains bits that apply to all types of objects. Five
of these are referred to as standard access types.

- Synchronize: Gives permission to synchronize execution with some event associated with
this object. In particular, this object can be used in await function.

- Write_owner: Allows a program to modify the owner of the object. Thisis useful because
the owner of an object can always change the protection on the object (the owner may not
be denied Write DAC access).

- Write_DAC: Allows the application to modify the DACL and hence the protection on this
object.

- Read_control: Allows the application to query the owner and DACL fields of the security
descriptor of this object.

- Delete: Allows the application to delete this object.

The high-order half of the access mask also contains the four generic access types. These
bits provide a convenient way to set specific access typesin anumber of different object types.
For example, suppose an application wishes to create several types of objects and ensure that
users have read access to the objects, even though read has a somewhat different meaning for
each object type. To protect each object of each type without the generic access bits, the
application would have to construct a different ACE for each type of object and be careful to
pass the correct ACE when creating each object. It is more convenient to create asingle ACE
that expresses the generic concept allow read, smply apply this ACE to each object that is
created, and have the right thing happen. That is the purpose of the generic access bits, which
are;

- Generic_all: Allow all access

- Generic_execute: Allow execution if executable
- Generic_write: Allow write access

- Generic_read: Allow read only access

The generic bits also affect the standard access types. For example, for afile object, the
Generic_Read bit maps to the standard bits Read_Control and Synchronize and to the object-
specific bits File_ Read Data, File Read Attributes, and File Read EA. Placing an ACE on a
file object that grants some SID Generic_Read grants those five access rights as if they had been
specified individually in the access mask.

The remaining two bits in the access mask have special meanings. The
Access System_Security bit allows modifying audit and alarm control for this object. However,
not only must this bit be set in the ACE for a SID, but the access token for the process with that
SID must have the corresponding privilege enabled.

Finally, the Maximum_Allowed bit is not really an access bit, but a bit that modifies W2K's
algorithm for scanning the DACL for this SID. Normally, W2K will scan through the DACL
until it reaches an ACE that specifically grants (bit set) or denies (bit not set) the access
requested by the requesting process or until it reaches the end of the DACL, in which latter case
accessis denied. The Maximum_Allowed bit allows the object's owner to define a set of access
rights that is the maximum that will be allowed to a given user. With thisin mind, suppose that
an application does not know al of the operations that it is going to be asked to perform on an
object during asession. There are three options for requesting access:

1. Attempt to open the object for all possible accesses. The disadvantage of this approach is
that the access may be denied even though the application may have all of the access
rights actually required for this session.

2. Only open the object when a specific access is requested, and open a new handle to the
object for each different type of request. Thisis generally the preferred method because it

-26

11/16/00

will not unnecessarily deny access, nor will it allow more access than necessary.
However, it imposes additional overhead.

3. Attempt to open the object for as much access as the object will alow this SID. The
advantage is that the user will not be artificially denied access, but the application may
have more access than it needs. This latter situation may mask bugs in the application.

An important feature of W2K security is that applications can make use of the W2K
security framework for user-defined objects. For example, a database server might create it own
security descriptors and attach them to portions of a database. In addition to normal read/write
access constraints, the server could secure database-specific operations, such as scrolling within
aresult set or performing ajoin. It would be the server's responsibility to define the meaning of
special rights and perform access checks. But the checks would occur in a standard context,
using systemwide user/group accounts and audit logs. The extensible security model should
prove useful to implementers of foreign files systems.

-27

SINMPNIIS AJANIS ()07 SMOPUIA [I°ST 2In3I]

JISI[[0IJUO0D SSAIY (I)

ais

YSBIA SSADY

103d1a3sap A)1andoS (q)

J9pBIH HOV

ais

Jsrq jonuoy)
$SAOY
A1euondnsI(q

U3Y0) SSANY (I)

MSBIAl SS90V

I9peIH TOV

Jsrq jonuoy)
$SIIY WIISAS

TOV Nnepd

RDUMQ JNePR(q

JI9pedH "TIV

UM

SA3IIALL]

sse|q

SAis dnoxn

(dIS) dI £3ndag

YSBIA SS90V ZT°ST 2angI

Peay JLIQUAN)
QLIAN OLISUAD)
QINOAXY JLIdUAD)
[[V QMU ———

POMO[[B WNWIXBIA
AILINJAS WAISAS SSAIIY

sad A ssaooe
sad£3 ssaooe oyroadg prepuels

A Y W

r\.¥\/\

sadA) ssaooe

JZIUOIYOUAS o
. JLIQUD

IQUMQ AIA
ovd LM
[o1u0)) peay
RIRIRYg|

