
11/16/00

-1
-

W I N D O W S 2 0 0 0W I N D O W S 2 0 0 0
William Stallings

This document is an extract from
Operating Systems: Internals and Design Principles, Fourth Edition
Prentice Hall, 2000, ISBN 0-13-031999-6
It is available at WilliamStallings.com/OS4e.html

Copyright 2001 William Stallings

11/16/00

-2
-

2.5 WINDOWS 2000 OVERVIEW..3
History..3
Single-User Multitasking ...4
Architecture..5

OS Organization...5
User Processes..6

Client/Server Model...7
Threads and SMP...7
Windows 2000 Objects ..8

4.4 WINDOWS 2000 THREAD AND SMP MANAGEMENT..10
Process and Thread Objects ...10
Multithreading..11
Thread States..11
Support for OS Subsystems ...11
Symmetric Multiprocessing Support ...12

6.9 WINDOWS 2000 CONCURRENCY MECHANISMS...13
8.5 WINDOWS 2000 MEMORY MANAGEMENT...14

W2K Virtual Address Map ..14
W2K Paging...14

10.5 WINDOWS 2000 SCHEDULING ...16
Process and Thread Priorities...16
Multiprocessor Scheduling ..16

11.9 WINDOWS 2000 I/O..18
Basic I/O Modules ...18
Asynchronous and Synchronous I/O..18
Software RAID ..19

12.8 WINDOWS 2000 FILE SYSTEM..20
Key Features of NTFS ...20
NTFS Volume and File Structure ..20

NTFS Volume Layout..21
Master File Table ...21

Recoverability ..22
13.5 WINDOWS 2000 CLUSTER SERVER...23
15.6 WINDOWS 2000 SECURITY ...24

Access Control Scheme ...24
Access Token ...24
Security Descriptors...25

11/16/00

-3
-

2.5 WINDOWS 2000 OVERVIEW

In this section, we provide an overview of Windows 2000. For brevity, we refer to Windows
2000 as W2K.

History
The story of W2K begins with a very different operating system, developed by Microsoft for the
first IBM personal computer, and referred to as MS-DOS or PC-DOS. The initial version, DOS
1.0, was released in August 1981. It consisted of 4000 lines of assembly-language source code
and ran in 8 Kbytes of memory using the Intel 8086 microprocessor.

When IBM developed a hard disk-based personal computer, the PC XT, Microsoft
developed DOS 2.0, released in 1983. It contained support for the hard disk and provided for
hierarchical directories. Heretofore, a disk could contain only one directory of files, supporting a
maximum of 64 files. While this was adequate in the era of floppy disks, it was too limited for a
hard disk, and the single-directory restriction was too clumsy. The new release allowed
directories to contain subdirectories as well as files. The new release also contained a richer set
of commands embedded in the operating system to provide functions that had to be performed by
external programs provided as utilities with release 1. Among the capabilities added were several
UNIX-like features, such as I/O redirection, which is the ability to change the input or output
identity for a given application, and background printing. The memory-resident portion grew to
24 Kbytes.

When IBM announced the PC AT in 1984, Microsoft introduced DOS 3.0. The AT
contained the Intel 80286 processor, which provided extended addressing and memory protection
features. These were not used by DOS. To remain compatible with previous releases, the
operating system simply used the 80286 as a "fast 8086." The operating system did provide
support for new keyboard and hard disk peripherals. Even so, the memory requirement grew to
36 Kbytes. There were several notable upgrades to the 3.0 release. DOS 3.1, released in 1984,
contained support for networking of PCs. The size of the resident portion did not change; this
was achieved by increasing the amount of the operating system that could be swapped. DOS 3.3,
released in 1987, provided support for the new line of IBM machines, the PS/2. Again, this
release did not take advantage of the processor capabilities of the PS/2, provided by the 80286
and the 32-bit 80386 chips. The resident portion at this stage had grown to a minimum of 46
Kbytes, with more required if certain optional extensions were selected.

By this time, DOS was being used in an environment far beyond its capabilities. The
introduction of the 80486 and then the Intel Pentium chip provided power and features that
simply could not be exploited by the simple-minded DOS. Meanwhile, beginning in the early
1980s, Microsoft began development of a graphical user interface (GUI) that would be
interposed between the user and DOS. Microsoft's intent was to compete with Macintosh, whose
operating system was unsurpassed for ease of use. By 1990, Microsoft had a version of the GUI,
known as Windows 3.0, which approached the user friendliness of Macintosh. However, it was
still hamstrung by the need to run on top of DOS.

After an abortive attempt by Microsoft to develop with IBM a next-generation operating
system,1 which would exploit the power of the new microprocessors and which would
incorporate the ease-of-use features of Windows, Microsoft struck out on its own and developed
a new operating system from the ground up, Windows NT. Windows NT exploits the capabilities
of contemporary microprocessors and provides multitasking in a single-user or multiple-user
environment.

1 IBM went on to develop OS/2 on its own. Like Windows NT, OS/2 is a multitasking,
multithreaded operating system.

11/16/00

-4
-

The first version of Windows NT (3.1) was released in 1993, with the same GUI as
Windows 3.1, another Microsoft operating system (the follow-on to Windows 3.0). However,
NT 3.1 was a new 32-bit operating system with the ability to support older DOS and Windows
applications, as well as provide OS/2 support.

After several versions of NT 3.x, Microsoft released NT 4.0. NT 4.0 has essentially the
same internal architecture as 3.x. The most notable external change is that NT 4.0 provides the
same user interface as Windows 98. The major architectural change is that several graphics
components that ran in user mode as part of the Win32 subsystem in 3.x have been moved into
the Windows NT Executive, which runs in kernel mode. The benefit of this change is to speed up
the operation of these important functions. The potential drawback is that these graphics
functions now have access to low-level system services, which could impact the reliability of the
operating system.

In 2000, Microsoft introduced the next major upgrade, now called Windows 2000. Again,
the underlying Executive and microkernel architecture is fundamentally the same as in NT 4.0,
but new features have been added. The emphasis in W2K is the addition of services and
functions to support distributed processing. The central element of W2K's new features is Active
Directory, which is a distributed directory service able to map names of arbitrary objects to any
kind of information about those objects.

One final general point to make about W2K is the distinction between W2K Server and
W2K Professional. In essence, the microkernel and executive architecture and services remain
the same, but Server includes some services required to use as a network server.

Single-User Multitasking
W2K is a significant example of what has become the new wave in microcomputer operating
systems (other examples are OS/2 and MacOS). W2K was driven by a need to exploit the
processing capabilities of today's 32-bit microprocessor, which rival mainframes and
minicomputers of just a few years ago in speed, hardware sophistication, and memory capacity.

One of the most significant features of these new operating systems is that, although they
are still intended for support of a single interactive user, they are multitasking operating systems.
Two main developments have triggered the need for multitasking on personal computers,
workstations, and servers. First, with the increased speed and memory capacity of
microprocessors, together with the support for virtual memory, applications have become more
complex and interrelated. For example, a user may wish to employ a word processor, a drawing
program, and a spreadsheet application simultaneously to produce a document. Without
multitasking, if a user wishes to create a drawing and paste it into a word processing document,
the following steps are required:

1. Open the drawing program.
2. Create the drawing and save it in a file or on a temporary clipboard.
3. Close the drawing program.
4. Open the word processing program.
5. Insert the drawing in the correct location.

If any changes are desired, the user must close the word processing program, open the
drawing program, edit the graphic image, save it, close the drawing program, open the word
processing program, and insert the updated image. This becomes tedious very quickly. As the
services and capabilities available to users become more powerful and varied, the single-task
environment becomes more clumsy and user unfriendly. In a multitasking environment, the user
opens each application as needed, and leaves it open. Information can be moved around among a
number of applications easily. Each application has one or more open windows, and a graphical
interface with a pointing device such as a mouse allows the user to navigate quickly in this
environment.

11/16/00

-5
-

A second motivation for multitasking is the growth of client/server computing. With
client/server computing, a personal computer or workstation (client) and a host system (server)
are used jointly to accomplish a particular application. The two are linked together, and each is
assigned that portion of the job that it is suited to its capabilities. Client/server can be achieved in
a local area network of personal computers and servers or by means of a link between a user
system and a large host such as a mainframe. An application may involve one or more personal
computers and one or more server devices. To provide the required responsiveness, the operating
system needs to support sophisticated real-time communication hardware and the associated
communications protocols and data transfer architectures while at the same time supporting
ongoing user interaction.

The foregoing remarks apply to the Professional version of W2K. The Server version is
also multitasking but may support multiple users. It supports multiple terminal server
connections as well as providing shared services used by multiple users on the network. As an
Internet server, W2K may support thousands of simultaneous Web connections.

Architecture
Figure 2.13, based on one in [SOLO98b], illustrates the overall structure of W2K. Its modular
structure gives W2K considerable flexibility. It is designed to execute on a variety of hardware
platforms and supports applications written for a variety of other operating systems. As of this
writing, W2K is only implemented on the Pentium/x86 hardware platform.

As with virtually all operating systems, W2K separates application-oriented software from
operating-system software. The latter, which includes the Executive, the microkernel, device
drivers, and the hardware abstraction layer, runs in kernel mode. Kernel mode software has
access to system data and to the hardware. The remaining software, running in user mode, has
limited access to system data.

OS Organization
W2K does not have a pure microkernel architecture but what Microsoft refers to as a

modified microkernel architecture. As with a pure microkernel architecture, W2K is highly
modular. Each system function is managed by just one component of the operating system. The
rest of the operating system and all applications access that function through the responsible
component using a standard interface. Key system data can only be accessed through the
appropriate function. In principle, any module can be removed, upgraded, or replaced without
rewriting the entire system or its standard application program interface (APIs). However, unlike
a pure microkernel system, W2K is configured so that many of the system functions outside the
microkernel run in kernel mode. The reason is performance. The W2K developers found that
using the pure microkernel approach, many non-microkernel functions required several process
or thread switches, mode switches, and the use of extra memory buffers.

One of the goals of the W2K design is portability, that it be able to run not just on Intel
machines but on a variety of hardware platforms. To satisfy this goal, most of the W2K
Executive sees the same view of the underlying hardware, using the following layered structure:

• Hardware abstraction layer (HAL): Maps between generic hardware commands and
responses and those unique to a specific platform. It isolates the operating system from
platform-specific hardware differences. The HAL makes each machine's system bus,
direct-memory access (DMA) controller, interrupt controller, system timers, and memory
module look the same to the kernel. It also delivers the support needed for symmetric
multiprocessing (SMP), explained subsequently.

• Microkernel: Consists of the most used and most fundamental components of the
operating system. The kernel manages thread scheduling, process switching, exception and
interrupt handling, and multiprocessor synchronization. Unlike the rest of the Executive
and the user level, the microkernel's own code does not run in threads. Hence, it is the only
part of the operating system that is not preemptible or pageable.

11/16/00

-6
-

• Device drivers: Include both file system and hardware device drivers that translate user I/O
function calls into specific hardware device I/O requests.

The W2K Executive includes modules for specific system functions and provides an API
for user-mode software. Following is a brief description of each of the Executive modules:

• I/O manager: Provides a framework through which I/O devices are accessible to
applications, and is responsible for dispatching to the appropriate device drivers for further
processing. The I/O manager implements all the W2K I/O APIs and enforces security and
naming for devices and file systems (using the object manager). W2K I/O is discussed in
Chapter 11.

• Object manager: Creates, manages, and deletes W2K Executive objects and abstract data
types that are used to represent resources such as processes, threads, and synchronization
objects. It enforces uniform rules for retaining, naming, and setting the security of objects.
The object manager also creates object handles, which consist of access control information
and a pointer to the object. W2K objects are discussed later in this section.

• Security reference monitor: Enforces access-validation and audit-generation rules. The
W2K object-oriented model allows for a consistent and uniform view of security, right
down to the fundamental entities that make up the Executive. Thus, W2K uses the same
routines for access validation and for audit checks for all protected objects, including files,
processes, address spaces, and I/O devices. W2K security is discussed in Chapter 15.

• Process/thread manager: Creates and deletes objects and tracks process and thread
objects. W2K process and thread management are described in Chapter 4.

• Local procedure call (LPC) Facility: Enforces a client/server relationship between
applications and executive subsystems within a single system, in a manner similar to a
remote procedure call (RPC) facility used for distributed processing.

• Virtual memory manager: Maps virtual addresses in the process's address space to
physical pages in the computer's memory. W2K virtual memory management is described
in Chapter 8.

• Cache manager: Improves the performance of file-based I/O by causing recently
referenced disk data to reside in main memory for quick access, and by deferring disk
writes by holding the updates in memory for a short time before sending them to the disk.

• Windows/graphics modules: Creates the windows-oriented screen interface and manages
the graphics devices.

User Processes
Four basic types of user processes are supported by W2K:

• Special system support processes: Include services not provided as part of the W2K
operating system, such as the logon process and the session manager.

• Server processes: Other W2K services such as the event logger.
• Environment subsystems: Expose the native W2K services to user applications and thus

provide an OS environment, or personality. The supported subsystems are Win32, Posix,
and OS/2. Each environment subsystem includes dynamic link libraries (DLLs) that
convert the user application calls to W2K calls.

• User applications: Can be one of five types: Win32, Posix, OS/2, Windows 3.1, or MS-
DOS.

W2K is structured to support applications written for W2K, Windows 98, and several other
operating systems. W2K provides this support using a single, compact Executive through
protected environment subsystems. The protected subsystems are those parts of W2K that
interact with the end user. Each subsystem is a separate process, and the Executive protects its
address space from that of other subsystems and applications. A protected subsystem provides a
graphical or command-line user interface that defines the look and feel of the operating system

11/16/00

-7
-

for a user. In addition, each protected subsystem provides the API for that particular operating
environment. This means that applications created for a particular operating environment may
run unchanged on W2K, because the operating system interface that they see is the same as that
for which they were written. So, for example, OS/2-based applications can run under the W2K
operating system without modification. Furthermore, because the W2K system is itself designed
to be platform independent, through the use of the hardware abstraction layer (HAL), it should
be relatively easy to port both the protected subsystems and the applications they support from
one hardware platform to another. In many cases, a recompile is all that should be required.

The most important subsystem is Win32. Win32 is the API implemented on both W2K and
Windows 98. Some of the features of Win32 are not available in Windows 98, but those features
implemented on Windows 98 are identical with those of W2K. Table 2.5 lists some of the key
functions provided for the programmer by Win32.

Client/Server Model
The Executive, the protected subsystems, and the applications are structured using the
client/server computing model, which is a common model for distributed computing and which
is discussed in Part Six. This same architecture can be adopted for use internal to a single system,
as is the case with W2K.

Each environment subsystem and executive service subsystem is implemented as one or
more processes. Each process waits for a request from a client for one of its services, for
example memory services, process creation services, or processor scheduling services. A client,
which can be an application program or another operating system module, requests a service by
sending a message. The message is routed through the Executive to the appropriate server. The
server performs the requested operation and returns the results or status information by means of
another message, which is routed through the Executive back to the client.

Advantages of a client/server architecture include the following:

• It simplifies the Executive. It is possible to construct a variety of APIs without any conflicts
or duplications in the Executive. New APIs can be added easily.

• It improves reliability. Each executive services module runs on a separate process, with its
own partition of memory, protected from other modules. Furthermore, the clients cannot
directly access hardware or modify memory in which the Executive is stored. A single
client can fail without crashing or corrupting the rest of the operating system.

• It provides a uniform means for applications to communicate with the Executive via LPCs
without restricting flexibility. The message-passing process is hidden from the client
applications by function stubs, which are nonexecutable placeholders kept in dynamic link
libraries (DLLs). When an application makes an API call to an environment subsystem, the
stub in the client application packages the parameters for the call and sends them as a
message to a server subsystem that implements the call.

• It provides a suitable base for distributed computing. Typically, distributed computing
makes use of a client/server model, with remote procedure calls implemented using
distributed client and server modules and the exchange of messages between clients and
servers. With W2K, a local server can pass a message on to a remote server for processing
on behalf of local client applications. Clients need not know whether a request is serviced
locally or remotely. Indeed, whether a request is serviced locally or remotely can change
dynamically based on current load conditions and on dynamic configuration changes.

Threads and SMP
Two important characteristics of W2K are its support for threads and for symmetric
multiprocessing (SMP), both of which were introduced in Section 2.4. [CUST93] lists the
following features of W2K that support the threads and SMP:

11/16/00

-8
-

• Operating-system routines can run on any available processor, and different routines can
execute simultaneously on different processors.

• W2K supports the use of multiple threads of execution within a single process. Multiple
threads within the same process may execute on different processors simultaneously.

• Server processes may use multiple threads to process requests from more than one client
simultaneously.

• W2K provides mechanisms for sharing data and resources between processes and flexible
interprocess communication capabilities.

Windows 2000 Objects
W2K draws heavily on the concepts of object-oriented design. This approach facilitates the
sharing of resources and data among processes and the protection of resources from unauthorized
access. Among the key object-oriented concepts used by W2K are the following:

• Encapsulation: An object consists of one or more items of data, called attributes, and one
or more procedures that may be performed on those data, called services. The only way to
access the data in an object is by invoking one of the object's services. Thus, the data in the
object can easily be protected from unauthorized use and from incorrect use (e.g., trying to
execute a nonexecutable piece of data).

• Object class and instance: An object class is a template that lists the attributes and
services of an object and defines certain object characteristics. The operating system can
create specific instances of an object class as needed. For example, there is a single process
object class and one process object for every currently active process. This approach
simplifies object creation and management.

• Inheritance: This is not supported at the user level but is supported to some extent within
the Executive. For example, Directory objects are examples of container objects. One
property of a container object is that the objects they contain can inherit properties from the
container itself. As an example, suppose you have a directory in the file system that has its
compressed flag set. Then any files you might create within that directory container will
also have their compressed flag set.

• Polymorphism: Internally, W2K uses a common set of API functions to manipulate
objects of any type; this is a feature of polymorphism, as defined in Appendix B. However,
W2K is not completely polymorphic because there are many APIs that are specific to
specific object types.

The reader unfamiliar with object-oriented concepts should review Appendix B at the end of this
book.

Not all entities in W2K are objects. Objects are used in cases where data are opened for
user mode access or when data access is shared or restricted. Among the entities represented by
objects are files, processes, threads, semaphores, timers, and windows. W2K creates and
manages all types of objects in a uniform way, via the object manager. The object manager is
responsible for creating and destroying objects on behalf of applications and for granting access
to an object's services and data.

Each object within the Executive, sometimes referred to as a kernel object (to distinguish
from user-level objects not of concern to the Executive), exists as a memory block allocated by
the kernel and is accessible only by the kernel. Some elements of the data structure (e.g., object
name, security parameters, usage count) are common to all object types, while other elements are
specific to a particular object type (e.g., a thread object's priority). These kernel object data
structures are accessible only by the kernel; it is impossible for an application to locate these data
structures and read or write them directly. Instead, applications manipulate objects indirectly
through the set of object manipulation functions supported by the Executive. When an object is
created, the application that request the creation receives back a handle for the object. In essence

11/16/00

-9
-

a handle is a pointer to the referenced object. This handle can then be used by any thread within
the same process to invoke Win32 functions that work with objects.

Objects may have security information associated with them, in the form of a Security
Descriptor (SD). This security information can be used to restrict access to the object. For
example, a process may create a named semaphore object with the intent that only certain users
should be able to open and use that semaphore. The SD for the semaphore object can list those
users that are allowed (or denied) access to the semaphore object along with the sort of access
permitted (read, write, change, etc.).

In W2K, objects may be either named or unnamed. When a process creates an unnamed
object, the object manager returns a handle to that object, and the handle is the only way to refer
to it. Named objects have a name that other processes can use to obtain a handle to the object.
For example, if process A wishes to synchronize with process B, it could create a named event
object and pass the name of the event to B. Process B could then open and use that event object.
However, if A simply wished to use the event to synchronize two threads within itself, it would
create an unnamed event object, because there is no need for other processes to be able to use
that event.

As an example of the objects managed by W2K, we list the two categories of objects
managed by the microkernel;

• Control objects: Used to control the operation of the microkernel in areas not affecting
dispatching and synchronization. Table 2.6 lists the microkernel control objects.

• Dispatcher objects: Control the dispatching and synchronization of system operations.
These are described in Chapter 6.

W2K is not a full-blown object-oriented operating system. It is not implemented in an
object-oriented language. Data structures that reside completely within one Executive component
are not represented as objects. Nevertheless, W2K illustrates the power of object-oriented
technology and represents the increasing trend toward the use of this technology in operating-
system design.

Table 2.5 Some Areas Covered by the Win32 API [RICH97]

Atoms

Child controls

Clipboard manipulations

Communications

Consoles

Debugging

Dynamic link libraries (DLLs)

Event logging

Files

Graphics drawing primitives

Keyboard and mouse input

Memory management

Mutimedia services

Networks

Pipes and mailslots

Printing

Processes and threads

Registry database manipulation

Resources

Security

Services

Structured exception handling

System information

Tape backup

Time

Window management

Table 2.6 NT Microkernel Control Objects [MS96]

Asynchronous Procedure Call Used to break into the execution of a specified thread and to
cause a procedure to be called in a specified processor mode.

Interrupt Used to connect an interrupt source to an interrupt service
routine by means of an entry in an Interrupt Dispatch Table

(IDT). Each processor has an IDT that is used to dispatch
interrupts that occur on that processor.

Process Represents the virtual address space and control information
necessary for the execution of a set of thread objects. A process
contains a pointer to an address map, a list of ready thread

containing thread objects, a list of threads belonging to the
process, the total accumulated time for all threads executing
within the process, and a base priority.

Profile Used to measure the distribution of run time within a block of
code. Both user and system code can be profiled.

W
in

do
w

s
20

00
E

xe
cu

ti
ve

I/
O

 M
an

ag
er

D
ev

ic
e

dr
iv

er
s

E
xe

cu
ti

ve
 A

P
I

M
ic

ro
ke

rn
el

C
ac

he
m

an
ag

er
L

P
C

fa
ci

lit
y

F
ile

Sy
st

em
s

P
ro

ce
ss

/
th

re
ad

m
an

ag
er

Sy
st

em
th

re
ad

U
se

r
m

od
e

K
er

ne
l

m
od

e

V
ir

tu
al

m
em

or
y

m
an

ag
er

W
in

do
w

m
an

ag
er

Se
cu

ri
ty

re
fe

re
nc

e
m

on
it

or

F
ig

ur
e

2.
13

 W
in

do
w

s
20

00
 A

rc
hi

te
ct

ur
e

H
ar

dw
ar

e
A

bs
tr

ac
ti

on
 L

ay
er

 (
H

A
L

)

H
ar

dw
ar

e
in

te
rf

ac
es

 (
bu

se
s,

 I
/O

, i
nt

er
ru

pt
s,

 t
im

er
s,

cl
oc

ks
, D

M
A

, c
ac

he
 c

on
tr

ol
, e

tc
.)

O
bj

ec
t

m
an

ag
em

en
t/

E
xe

cu
ti

ve
 R

T
L

Se
ss

io
n

m
an

ag
er

W
in

32O
S/

2
P

O
SI

X

E
ve

nt
lo

gg
er

R
P

C

N
T

D
L

L
.D

L
L

A
le

rt
er

Su
bs

ys
te

m
 D

L
L

s

U
se

r
ap

pl
ic

at
io

n

R
ep

lic
at

or

W
in

L
og

on

Sy
st

em
 P

ro
ce

ss
es

Se
rv

ic
es

A
pp

lic
at

io
ns

E
nv

ir
on

m
en

t
su

bs
ys

te
m

s
Se

rv
ic

e
co

nt
ro

lle
r

11/16/00

-10
-

4.4 WINDOWS 2000 THREAD AND SMP MANAGEMENT

Windows 2000 (W2K) process design is driven by the need to provide support for a variety of
operating system environments. Processes supported by different operating system environments
differ in a number of ways, including the following:

• How processes are named
• Whether threads are provided within processes
• How processes are represented
• How process resources are protected
• What mechanisms are used for interprocess communication and synchronization
• How processes are related to each other

Accordingly, the native process structures and services provided by the W2K kernel are
relatively simple and general purpose, allowing each operating system subsystem to emulate a
particular process structure and functionality. Important characteristics of W2K processes are the
following:

• W2K processes are implemented as objects
• An executable process may contain one or more threads.
• Both process and thread objects have built-in synchronization capabilities.

Figure 4.12 illustrates the way in which a process relates to the resources it controls or uses.
Each process is assigned a security access token, called the primary token of the process. When a
user first logs on, W2K creates an access token that includes a security ID for the user. Every
process that is created by or runs on behalf of this user has a copy of this access token. W2K uses
the token to validate the user's ability to access secured objects or to perform restricted functions
on the system and on secured objects. The access token controls whether the process can change
its own attributes. In this case, the process does not have a handle opened to its access token. If
the process attempts to open such a handle, the security system determines whether this is
permitted and therefore whether the process may change its own attributes.

Also related to the process is a series of blocks that define the virtual address space
currently assigned to this process. The process cannot directly modify these structures but must
rely on the virtual memory manager, which provides a memory-allocation service for the
process.

Finally, the process includes an object table, with handles to other objects known to this
process. One handle exists for each thread contained in this object. Figure 4.12 shows a single
thread. In addition, the process has access to a file object and to a section object that defines a
section of shared memory.

Process and Thread Objects
The object-oriented structure of W2K facilitates the development of a general-purpose process
facility. W2K makes use of two types of process-related objects: processes and threads. A
process is an entity corresponding to a user job or application that owns resources, such as
memory, and opens files. A thread is a dispatchable unit of work that executes sequentially and is
interruptible, so that the processor can turn to another thread.

Each W2K process is represented by an object whose general structure is shown in Figure
4.13a. Each process is defined by a number of attributes and encapsulates a number of actions, or
services, that it may perform. A process will perform a service upon receipt of the appropriate
message; the only way to invoke such a service is by means of messages to a process object that
provides that service. When W2K creates a new process, it uses the object class, or type, defined
for the W2K process as a template to generate a new object instance. At the time of creation,

11/16/00

-11
-

attribute values are assigned. Table 4.3 gives a brief definition of each of the object attributes for
a process object.

An W2K process must contain at least one thread to execute. That thread may then create
other threads. In a multiprocessor system, multiple threads from the same process may execute in
parallel. Figure 4.13b depicts the object structure for a thread object, and Table 4.4 defines the
thread object attributes. Note that some of the attributes of a thread resemble those of a process.
In those cases, the thread attribute value is derived from the process attribute value. For example,
the thread processor affinity is the set of processors, in a multiprocessor system, that may
execute this thread; this set is equal to or a subset of the process processor affinity.

Note that one of the attributes of a thread object is context. This information enables
threads to be suspended and resumed. Furthermore, it is possible to alter the behavior of a thread
by altering its context when it is suspended.

Multithreading
W2K supports concurrency among processes because threads in different processes may execute
concurrently. Moreover, multiple threads within the same process may be allocated to separate
processors and execute concurrently. A multithreaded process achieves concurrency without the
overhead of using multiple processes. Threads within the same process can exchange
information through their common address space and have access to the shared resources of the
process. Threads in different processes can exchange information through shared memory that
has been set up between the two processes.

An object-oriented multithreaded process is an efficient means of implementing a server
application. For example, one server process can service a number of clients. Each client request
triggers the creation of a new thread within the server.

Thread States
An existing W2K thread is in one of six states (Figure 4.14):

• Ready: May be scheduled for execution. The microkernel dispatcher keeps track of all
ready threads and schedules in priority order.

• Standby: A standby thread has been selected to run next on a particular processor. The
thread waits in this state until that processor is made available. If the standby thread's
priority is high enough, the running thread on that processor may be preempted in favor of
the standby thread. Otherwise, the standby thread waits until the running thread blocks or
finishes its time slice.

• Running: Once the microkernel performs a thread or process switch, the standby thread
enters the running state and begins execution and continues execution until it is preempted,
exhausts its time slice, blocks, or terminates. In the first two cases, it goes back to the ready
state.

• Waiting: A thread enters the waiting state when (1) it is blocked on an event (e.g., I/O), (2)
it voluntarily waits for synchronization purposes, or (3) an environment subsystem directs
the thread to suspend itself. When the waiting condition is satisfied, the thread moves to the
Ready state if all of its resources are available.

• Transition: A thread enters this state after waiting if it is ready to run but the resources are
not available. For example, the thread's stack may be paged out of memory. When the
resources are available, the thread goes to the Ready state.

• Terminated: A thread can be terminated by itself, by another thread, or when its parent
process terminates. Once housekeeping chores are completed, the thread is removed from
the system, or it may be retained by the executive for future reinitialization.

Support for OS Subsystems
The general-purpose process and thread facility must support the particular process and thread
structures of the various OS clients. It is the responsibility of each OS subsystem to exploit the

11/16/00

-12
-

W2K process and thread features to emulate the process and thread facilities of its corresponding
operating system. This area of process/thread management is quite complicated, and we give
only a brief overview here.

Process creation begins with a request for a new process from an OS application. The
create-process request is issued from an application to the corresponding protected subsystem.
The subsystem, in turn, issues a process request to the W2K executive. W2K creates a process
object and returns a handle to that object to the subsystem. When W2K creates a process, it does
not automatically create a thread. In the case of Win32 and OS/2, a new process is always
created with a thread. Therefore, for these operating systems, the subsystem calls the W2K
process manager again to create a thread for the new process, receiving a thread handle back
from W2K. The appropriate thread and process information are then returned to the application.
In the case of 16-bit Windows and POSIX, threads are not supported. Therefore, for these
operating systems, the subsystem obtains a thread for the new process from W2K so that the
process may be activated, but returns only process information to the application. The fact that
the application process is implemented using a thread is not visible to the application.

When a new process is created in Win32 or OS/2, the new process inherits many of its
attributes from the creating process. However, in the W2K environment, this process creation is
done indirectly. An application client process issues its process creation request to the OS
subsystem; then a process in the subsystem in turn issues a process request to the W2K
executive. Because the desired effect is that the new process inherits characteristics of the client
process and not of the server process, W2K enables the subsystem to specify the parent of the
new process. The new process then inherits the parent's access token, quota limits, base priority,
and default processor affinity.

Symmetric Multiprocessing Support
W2K supports an SMP hardware configuration. The threads of any process, including those of
the executive, can run on any processor. In the absence of affinity restrictions, explained in the
next paragraph, the microkernel assigns a ready thread to the next available processor. This
assures that no processor is idle or is executing a lower-priority thread when a higher-priority
thread is ready. Multiple threads from the same process can be executing simultaneously on
multiple processors.

As a default, the microkernel uses the policy of soft affinity in assigning threads to
processors: the dispatcher tries to assign a ready thread to the same processor it last ran on. This
helps reuse data still in that processor's memory caches from the previous execution of the
thread. It is possible for an application to restrict its thread execution to certain processors (hard
affinity).

Table 4.3 Windows 2000 Process Object Attributes

Process ID A unique value that identifies the process to the operating system.

Security Descriptor Describes who created an object, who can gain access to or use the
object, and who is denied access to the object.

Base priority A baseline execution priority for the process's threads.

Default processor affinity The default set of processors on which the process's threads can

run.

Quota limits The maximum amount of paged and nonpaged system memory,

paging file space, and processor time a user's processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that
the process's threads have performed.

VM operation counters Variables that record the number and types of virtual memory
operations that the process's threads have performed.

Exception/debugging ports Interprocess communication channels to which the process
manager sends a message when one of the process's threads causes

an exception.

Exit status The reason for a process's termination.

Table 4.4 Windows 2000 Thread Object Attributes

Thread ID A unique value that identifies a thread when it calls a server.

Thread context The set of register values and other volatile data that defines the
execution state of a thread.

Dynamic priority The thread's execution priority at any given moment.

Base priority The lower limit of the thread's dynamic priority.

Thread processor affinity The set of processors on which the thread can run, which is a
subset or all of the processor affinity of the thread's process.

Thread execution time The cumulative amount of time a thread has executed in user mode
and in kernel mode.

Alert status A flag that indicates whether the thread should execute an
asynchronous procedure call.

Suspension count The number of times the thread's execution has been suspended
without being resumed.

Impersonation token A temporary access token allowing a thread to perform operations
on behalf of another process (used by subsystems).

Termination port An interprocess communication channel to which the process
manager sends a message when the thread terminates (used by

subsystems).

Thread exit status The reason for a thread's termination.

P
ro

ce
ss

A
cc

es
s

to
ke

n

V
ir

tu
al

 a
dd

re
ss

 s
pa

ce
 d

es
cr

ip
ti

on

T
hr

ea
d

x

F
ile

y

Se
ct

io
n

z

• • •

H
an

dl
e1

H
an

dl
e2

H
an

dl
e3

A
va

ila
bl

e
ob

je
ct

s

F
ig

ur
e

4.
12

 W
in

do
w

s
20

00
 P

ro
ce

ss
 a

nd
 I

ts
 R

es
ou

rc
es

O
bj

ec
t

T
ab

le

Pr
oc

es
s

ID
Se

cu
ri

ty
 D

es
cr

ip
to

r
B

as
e

pr
io

ri
ty

D
ef

au
lt

pr
oc

es
so

r
af

fi
ni

ty
Q

uo
ta

 li
m

its
E

xe
cu

tio
n

tim
e

I/
O

 c
ou

nt
er

s
V

M
 o

pe
ra

tio
n

co
un

te
rs

E
xc

ep
tio

n/
de

bu
gg

in
g

po
rt

s
E

xi
t s

ta
tu

s

C
re

at
e

pr
oc

es
s

O
pe

n
pr

oc
es

s
Q

ue
ry

 p
ro

ce
ss

 in
fo

rm
at

io
n

Se
t p

ro
ce

ss
 in

fo
rm

at
io

n
C

ur
re

nt
 p

ro
ce

ss
T

er
m

in
at

e
pr

oc
es

s

P
ro

ce
ss

O
bj

ec
t

T
yp

e

O
bj

ec
t

B
od

y
A

tt
ri

bu
te

s

Se
rv

ic
es

T
hr

ea
d

ID
T

hr
ea

d
co

nt
ex

t
D

yn
am

ic
 p

ri
or

ity
B

as
e

pr
io

ri
ty

T
hr

ea
d

pr
oc

es
so

r
af

fi
ni

ty
T

hr
ea

d
ex

ec
ut

io
n

tim
e

A
le

rt
 s

ta
tu

s
Su

sp
en

si
on

 c
ou

nt
Im

pe
rs

on
at

io
n

to
ke

n
T

er
m

in
at

io
n

po
rt

T
hr

ea
d

ex
it

st
at

us

C
re

at
e

th
re

ad
O

pe
n

th
re

ad
Q

ue
ry

 th
re

ad
 in

fo
rm

at
io

n
Se

t t
hr

ea
d

in
fo

rm
at

io
n

C
ur

re
nt

 th
re

ad
T

er
m

in
at

e
th

re
ad

G
et

 c
on

te
xt

Se
t c

on
te

xt
Su

sp
en

d
R

es
um

e
A

le
rt

 th
re

ad
T

es
t t

hr
ea

d
al

er
t

R
eg

is
te

r
te

rm
in

at
io

n
po

rt

T
hr

ea
d

O
bj

ec
t

T
yp

e

O
bj

ec
t

B
od

y
A

tt
ri

bu
te

s

Se
rv

ic
es

(a
)

P
ro

ce
ss

 o
bj

ec
t

(b
)

T
hr

ea
d

ob
je

ct

F
ig

ur
e

4.
13

W

in
do

w
s

20
00

 P
ro

ce
ss

 a
nd

 T
hr

ea
d

O
bj

ec
ts

F
ig

ur
e

4.
14

W

in
do

w
s

20
00

 T
hr

ea
d

St
at

es

T
ra

ns
it

io
n

R
ea

dy

W
ai

ti
ng

R
un

na
bl

e

N
ot

 R
un

na
bl

e

St
an

db
y

P
ic

k
to

R
un

Sw
it

ch

P
re

em
pt

ed

B
lo

ck
/

Su
sp

en
d

U
nb

lo
ck

/R
es

um
e

R
es

ou
rc

e
A

va
ila

bi
le

R
es

ou
rc

e
A

va
ila

bi
le

U
nb

lo
ck

R
es

ou
rc

e
N

ot
 A

va
ila

bi
le

T
er

m
in

at
e

T
er

m
in

at
ed

R
un

ni
ng

11/16/00

-13
-

6.9 WINDOWS 2000 CONCURRENCY MECHANISMS

Windows 2000 (W2K) provides synchronization among threads as part of the object architecture.
The mechanism used by the W2K executive to implement synchronization facilities is the family
of synchronization objects, which consists of the following:

• Process
• Thread
• File
• Console input
• File change notification
• Mutex
• Semaphore
• Event
• Waitable timer

The first four object types in the foregoing list have other uses but also may be used for
synchronization. The remaining object types are specifically designed to support
synchronization.

Each synchronization object instance can be in either a signaled or unsignaled state. A
thread can be suspended on an object in an unsignaled state; the thread is released when the
object enters the signaled state. The mechanism is straightforward: a thread issues a wait request
to the W2K executive, using the handle of the synchronization object. When an object enters the
signaled state, the W2K executive releases all thread objects that are waiting on that
synchronization object.

Table 6.3 summarizes the events that cause each object type to enter the signaled state and
the effect it has on waiting threads.

The mutex object is used to enforce mutually exclusive access to a resource, allowing only
one thread object at a time to gain access. It therefore functions as a binary semaphore. When the
mutex object enters the signaled state, only one of the threads waiting on the mutex is released.
Mutexes can be used to synchronize threads running in different processes.

Like mutexes, semaphores may be shared by threads in multiple processes. The W2K
semaphore is the classic counting semaphore.

The waitable timer is a new kernel object provided in Windows NT 4.0. In essence, the
timer signals at a certain time and/or at regular intervals.

T
ab

le
 6

.3

W
in

do
w

s
20

00
 S

yn
ch

ro
ni

za
ti

on
 O

bj
ec

ts

O
bj

ec
t

T
yp

e
D

ef
in

it
io

n
Se

t
to

 S
ig

na
le

d
St

at
e

W
he

n
E

ff
ec

t
on

 W
ai

ti
ng

 T
hr

ea
ds

Pr
oc

es
s

A
 p

ro
gr

am
 in

vo
ca

tio
n,

 in
cl

ud
in

g

th
e

ad
dr

es
s

sp
ac

e
an

d
re

so
ur

ce
s

re
qu

ir
ed

 to
 r

un
 th

e
pr

og
ra

m

L
as

t t
hr

ea
d

te
rm

in
at

es
A

ll
re

le
as

ed

T
hr

ea
d

A
n

ex
ec

ut
ab

le
 e

nt
ity

 w
ith

in
 a

pr
oc

es
s

T
hr

ea
d

te
rm

in
at

es
A

ll
re

le
as

ed

Fi
le

A
n

in
st

an
ce

 o
f

an
 o

pe
ne

d
fi

le
 o

r
I/

O
 d

ev
ic

e
I/

O
 o

pe
ra

tio
n

co
m

pl
et

es
A

ll
re

le
as

ed

C
on

so
le

 I
np

ut
A

 te
xt

 w
in

do
w

 s
cr

ee
n

bu
ff

er
. (

e.
g.

,
us

ed
 to

 h
an

dl
e

sc
re

en
 I

/O
 f

or
 a

n
M

S-
D

O
S

ap
pl

ic
at

io
n)

In
pu

t i
s

av
ai

la
bl

e
fo

r
pr

oc
es

si
ng

O
ne

 th
re

ad
 r

el
ea

se
d

Fi
le

 C
ha

ng
e

N
ot

if
ic

at
io

n
A

 n
ot

if
ic

at
io

n
of

 a
ny

 f
ile

 s
ys

te
m

ch
an

ge
s.

C
ha

ng
e

oc
cu

rs
 in

 f
ile

 s
ys

te
m

 th
at

m
at

ch
es

 f
ilt

er
 c

ri
te

ri
a

of
 th

is
 o

bj
ec

t
O

ne
 th

re
ad

 r
el

ea
se

d

M
ut

ex
A

 m
ec

ha
ni

sm
 th

at
 p

ro
vi

de
s

m
ut

ua
l

ex
cl

us
io

n
ca

pa
bi

lit
ie

s
fo

r
th

e
W

in
32

 a
nd

 O
S/

2
en

vi
ro

nm
en

ts

O
w

ni
ng

 th
re

ad
 o

r
ot

he
r

th
re

ad

re
le

as
es

 th
e

m
ut

an
t

O
ne

 th
re

ad
 r

el
ea

se
d

Se
m

ap
ho

re
A

 c
ou

nt
er

 th
at

 r
eg

ul
at

es
 th

e

nu
m

be
r

of
 th

re
ad

s
th

at
 c

an
 u

se
 a

re
so

ur
ce

Se
m

ap
ho

re
 c

ou
nt

 d
ro

ps
 to

 z
er

o
A

ll
re

le
as

ed

E
ve

nt
A

n
an

no
un

ce
m

en
t t

ha
t a

 s
ys

te
m

ev
en

t h
as

 o
cc

ur
re

d

T
hr

ea
d

se
ts

 th
e

ev
en

t
A

ll
re

le
as

ed

W
ai

ta
bl

e
T

im
er

A
 c

ou
nt

er
 th

at
 r

ec
or

ds
 th

e
pa

ss
ag

e
of

 ti
m

e
Se

t t
im

e
ar

ri
ve

s
or

 ti
m

e
in

te
rv

al
ex

pi
re

s
A

ll
re

le
as

ed

N
ot

e:
 S

ha
de

d
ro

w
s

co
rr

es
po

nd
 to

 o
bj

ec
ts

 th
at

 e
xi

st
 f

or
 th

e
so

le
 p

ur
po

se
 o

f
sy

nc
hr

on
iz

at
io

n.

11/16/00

-14
-

8.5 WINDOWS 2000 MEMORY MANAGEMENT

The Windows 2000 (W2K) virtual memory manager controls how memory is allocated and how
paging is performed. The memory manager is designed to operate over a variety of platforms and
use page sizes ranging from 4 Kbytes to 64 Kbytes. Intel, PowerPC, and MIPS platforms have
4096 bytes per page and DEC Alpha platforms have 8192 bytes per page.

W2K Virtual Address Map
Each W2K user process sees a separate 32-bit address space, allowing 4 Gbytes of memory per
process. By default, a portion of this memory is reserved for the operating system, so each user
actually has 2 Gbyte of available virtual address space and all processes share the same 2 Gbytes
of system space. There an option that allows user space to be increased to 3 Gbytes, leaving 1
Gbyte for system space. The W2K documentation indicates that this feature is intended to
support large memory intensive applications on servers with multiple gigabytes of RAM, and
that the use of the larger address space can dramatically improve performance for applications
such as decision support or data mining.

Figure 8.25 shows the default virtual address space seen by a user process. It consists of
four regions:

• 0x00000000 to 0x0000FFFF: Set aside to help programmers catch NULL-pointer
assignments.

• 0x00010000 to 0x7FFEFFFF: Available user address space. This space is divided into
pages that may be loaded into main memory.

• 0x7FFF0000 to 0x7FFFFFFF: A guard page inaccessible to the user. This page makes it
easier for the operating system to check on out-of-bounds pointer references.

• 0x80000000 to 0xFFFFFFFF: System address space. This 2-Gbyte process is used for the
W2K Executive, microkernel, and device drivers.

W2K Paging
When a process is created, it can in principle make use of the entire user space of 2 Gbytes
(minus 128 kbyte). This space is divided into fixed-size pages, any of which can be brought into
main memory. In practice, to simplify the accounting, a page can be in one of three states:

• Available: Pages not currently used by this process.
• Reserved: A set of contiguous pages that the virtual memory manager sets aside for a

process but does not count against the process's memory quota until used. When a process
needs to write to memory, some of the reserved memory is committed to the process.

• Committed: Pages for which the virtual memory manager has set aside space in its paging
file (e.g., the disk file to which it writes pages when removing them from main memory).

The distinction between reserved and committed memory is useful because it (1) minimizes
the amount of disk space set aside for a particular process, keeping that disk space free for other
processes; and (2) enables a thread or process to declare an amount of memory that can be
quickly allocated as needed.

The resident set management scheme used by W2K is variable allocation, local scope (see
Table 8.4). When a process is first activated, it is assigned a certain number of page frames of
main memory as its working set. When a process references a page not in memory, one of the
resident pages of that process is swapped out and the new page is brought in. Working sets of
active processes are adjusted using the following general conventions:

• When main memory is plentiful, the virtual memory manager allows the resident sets of
active processes to grow. To do this, when a page fault occurs, a new page is brought into

11/16/00

-15
-

memory but no older page is swapped out, resulting in an increase of the resident set of that
process by one page.

• When memory becomes scarce, the virtual memory manager recovers memory for the
system by moving less recently used pages out of the working sets of active processes,
reducing the size of those resident sets.

0

0xFFFFFFFF

64-Kbyte region for
NULL-pointer assignments
(inaccessible)

64-Kbyte region for
bad pointer assignments
(inaccessible)

2-Gbyte region for
the operating system
(inacessible)

2-Gbyte user
address space
(unreserved, usable)

Figure 8.25 Windows 2000 Default Virtual Address Space

11/16/00

-16
-

10.5 WINDOWS 2000 SCHEDULING

Windows 2000 (W2K) is designed to be as responsive as possible to the needs of a single user in
a highly interactive environment or in the role of a server. W2K implements a preemptive
scheduler with a flexible system of priority levels that includes round-robin scheduling within
each level and, for some levels, dynamic priority variation on the basis of their current thread
activity.

Process and Thread Priorities
Priorities in W2K are organized into two bands, or classes: real time and variable. Each of these
bands consists of 16 priority levels. Threads requiring immediate attention are in the real-time
class, which includes functions such as communications and real-time tasks.

Overall, because W2K makes use of a priority-driven preemptive scheduler, threads with
real-time priorities have precedence over other threads. On a uniprocessor, when a thread
becomes ready whose priority is higher than the currently executing thread, the lower-priority
thread is preempted and the processor given to the higher-priority thread.

Priorities are handled somewhat differently in the two classes (Figure 10.12). In the real-
time priority class, all threads have a fixed priority that never changes. All of the active threads
at a given priority level are in a round-robin queue. In the variable priority class, a thread's
priority begins at some initial assigned value and then may change, up or down, during the
thread's lifetime. Thus, there is a FIFO queue at each priority level, but a process may migrate to
one of the other queues within the variable priority class. However, a thread at priority level 15
cannot be promoted to level 16 or any other level in the real-time class.

The initial priority of a thread in the variable priority class is determined by two quantities:
process base priority and thread base priority. One of the attributes of a process object is process
base priority, which can take on any value from 0 through 15. Each thread object associated with
a process object has a thread base priority attribute that indicates the thread's base priority
relative to that of the process. The thread's base priority can be equal to that of its process or
within two levels above or below that of the process. So, for example, if a process has a base
priority of 4, and one of its threads has a base priority of –1, then the initial priority of that thread
is 3.

Once a thread in the variable priority class has been activated, its actual priority, referred to
as the thread's dynamic priority, may fluctuate within given boundaries. The dynamic priority
may never fall below the lower range of the thread's base priority and it may never exceed 15.
Figure 10.13 gives an example. The process object has a base priority attribute of 4. Each thread
object associated with this process object must have an initial priority of between 2 and 6. The
dynamic priority for each thread may fluctuate in the range from 2 through 15. If a thread is
interrupted because it has used up its current time quantum, the W2K executive lowers its
priority. If a thread is interrupted to wait on an I/O event, the W2K executive raises its priority.
Thus, processor-bound threads tend toward lower priorities and I/O-bound threads tend toward
higher priorities. In the case of I/O-bound threads, the executive raises the priority more for
interactive waits (e.g., wait on keyboard or display) than for other types of I/O (e.g., disk I/O).
Thus, interactive threads tend to have the highest priorities within the variable priority class.

Multiprocessor Scheduling
When W2K is run on a single processor, the highest-priority thread is always active unless it is
waiting on an event. If there is more than one thread that has the highest priority, then the
processor is shared, round robin, among all the threads at that priority level. In a multiprocessor
system with N processors, the (N – 1) highest priority threads are always active, running
exclusively on the (N – 1) extra processors. The remaining, lower-priority, threads share the
single remaining processor. For example, if there are three processors, the two highest-priority
threads run on two processors, while all remaining threads run on the remaining processor.

11/16/00

-17
-

The foregoing discipline is affected by the processor affinity attribute of a thread. If a
thread is ready to execute but the only available processors are not in its processor affinity set,
then that thread is forced to wait, and the executive schedules the next available thread.

Highest (31)

Lowest (16)

Highest (15)

Lowest (0)

Real-time
Priority
Classes

Variable
Priority
Classes

Figure 10.12 Windows 2000 Thread Dispatching Priorities

base priority normal
below normal

lowest

above normal
highest

15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Process
Priority

Thread's Base
Priority

Thread's Dynamic
Priority

Figure 10.13 Example of Windows 2000 Priority Relationship

11/16/00

-18
-

11.9 WINDOWS 2000 I/O

Figure 11.16 shows the Windows 2000 (W2K) I/O manager. The I/O manager is responsible for
all I/O for the operating system and provides a uniform interface that all types of drivers can call.

Basic I/O Modules
The I/O manager consists of four modules:

• Cache manager: The cache manager handles caching for the entire I/O subsystem. The
cache manager provides a caching service in main memory to all file systems and network
components. It can dynamically increase and decrease the size of the cache devoted to a
particular activity as the amount of available physical memory varies. Cache manager
includes two services to improve overall performance:
—Lazy write: The system records updates in the cache only and not on disk. Later, when

demand on the processor is low, the cache manager writes the changes to disk. If a
particular cache block is updated in the meantime, there is a net savings.

—Lazy commit: This is similar to lazy write for transaction processing. Instead of
immediately marking a transaction as successfully completed, the system caches the
committed information and later writes it to the file system log by a background process.

• File system drivers: The I/O manager treats a file system driver as just another device
driver and routes message for certain volumes to the appropriate software driver for that
device adapter.

• Network drivers: W2K includes integrated networking capabilities and support for
distributed applications.

• Hardware device drivers: These drivers access the hardware registers of the peripheral
devices through entry points in W2K Executive dynamic link libraries. A set of these
routines exists for every platform that W2K supports; because the routine names are the
same for all platforms, the source code of W2K device drivers is portable across different
processor types.

Asynchronous and Synchronous I/O
W2K offers two modes of I/O operation: asynchronous and synchronous. The asynchronous
mode is used whenever possible to optimize application performance. With asynchronous I/O, an
application initiates an I/O operation and then can continue processing while the I/O request is
fulfilled. With synchronous I/O, the application is blocked until the I/O operation completes.

Asynchronous I/O is more efficient, from the point of view of the calling thread, because it
allows the thread to continue execution while the I/O operation is queued by the I/O manager and
subsequently performed. However, the application that invoked the asynchronous I/O operation
needs some way to determine when the operation is complete. W2K provides four different
techniques for signaling I/O completion:

• Signaling a device kernel object: With this approach, an indicator associated with a
device object is set when an operation on that object is complete. The thread that invoked
the I/O operation can continue to execute until it reaches a point where it must stop until
the I/O operation is complete. At that point, the thread can wait until the operation is
complete, and then continue. This technique is simple and easy to use but is not appropriate
for handling multiple I/O requests. For example, if a thread needs to perform multiple
simultaneous actions on a single file, such as reading from one portion and writing to
another portion of the file, with this technique, the thread could not distinguish between the
completion of the read and the completion of the write. It would simply know that some
requested I/O operation on this file was complete.

11/16/00

-19
-

• Signaling an event kernel object: This technique allows multiple simultaneous I/O
requests against a single device or file. The thread creates an event for each request. Later,
the thread can wait on a single one of these requests or on the entire collection of requests.

• Alertable I/O: This technique makes use of a queue associated with a thread, known as the
asynchronous procedure call (APC) queue. In this case, the thread makes I/O requests, and
the I/O manager places the results of these requests in the calling thread's APC queue.

• I/O completion ports: This technique is used on a W2K server to optimize the use of
threads. In essence, a pool of threads is available for use so that it is not necessary to create
a new thread to handle a new request.

Software RAID
W2K supports two sorts of RAID configurations, defined in [MS96] as follows:

• Hardware RAID: Separate physical disks combined into one or more logical disks by the
disk controller or disk storage cabinet hardware.

• Software RAID: Noncontiguous disk space combined into one or more logical partitions
by the fault-tolerant sofware disk driver, FTDISK.

In hardware RAID, the controller interface handles the creation and regeneration of
redundant information. The software RAID, available on W2K Server, implements the RAID
functionality as part of the operating system and can be used with any set of multiple disks. The
software RAID facility implements RAID 1 and RAID 5. In the case of RAID 1 (disk mirroring),
the two disks containing the primary and mirrored partitions may be on the same disk controller
or different disk controllers. The latter configuration is referred to as disk duplexing.

I/O Manager
Cache

Manager

File System
Drivers

Network
Drivers

Hardware
Device Drivers

Figure 11.16 Windows 2000 I/O Manager

11/16/00

-20
-

12.8 WINDOWS 2000 FILE SYSTEM

Windows 2000 (W2K) supports a number of file systems, including the file allocation table
(FAT) that runs on Windows 95, MS-DOS, and OS/2. But the developers of W2K also designed
a new file system, the W2K File System (NTFS), that is intended to meet high-end requirements
for workstations and servers. Examples of high-end applications:

• Client/server applications such as file servers, compute servers, and database servers
• Resource-intensive engineering and scientific applications
• Network applications for large corporate systems

This section provides an overview of NTFS.

Key Features of NTFS
NTFS is a flexible and powerful file system built, as which shall see, on an elegantly simple file
system model. The most noteworthy features of NTFS include:

• Recoverability: High on the list of requirements for the new W2K file system was the
ability to recover from system crashes and disk failures. In the event of such failures, NTFS
is able to reconstruct disk volumes and return them to a consistent state. It does this by
using a transaction processing model for changes to the file system; each significant change
is treated as an atomic action that is either entirely performed or not performed at all. Each
transaction that was in process at the time of a failure is subsequently backed out or
brought to completion. In addition, NTFS uses redundant storage for critical file system
data, so that failure of a disk sector does not cause the loss of data describing the structure
and status of the file system.

• Security: NTFS uses the W2K object model to enforce security. An open file is
implemented as a file object with a security descriptor that defines its security attributes.

• Large disks and large files: NTFS supports very large disks and very large files more
efficiently than most other file systems, including FAT.

• Multiple data streams: The actual contents of a file are treated as a stream of bytes. In
NTFS it is possible to define multiple data streams for a single file. An example of the
utility of this feature is that it allows W2K to be used by remote Macintosh systems to store
and retrieve files. On Macintosh, each file has two components: the file data and a resource
fork that contains information about the file. NTFS treats these two components as two data
streams.

• General indexing facility: NTFS associates a collection of attributes with each file. The
set of file descriptions in the file management system is organized as a relational database,
so that files can be indexed by any attribute.

NTFS Volume and File Structure
NTFS makes use of the following disk storage concepts:

• Sector: The smallest physical storage unit on the disk. The data size in bytes is a power of
2 and is almost always 512 bytes.

• Cluster: One or more contiguous (next to each other on the same track) sectors. The cluster
size in sectors is a power of 2.

• Volume: A logical partition on a disk, consisting of one or more clusters and used by a file
system to allocate space. At any time, a volume consists of a file system information, a
collection of files, and any additional unallocated space remaining on the volume that can
be allocated to files. A volume can be all or a portion of a single disk or it can extend

11/16/00

-21
-

across multiple disks. If hardware or software RAID 5 is employed, a volume consists of
stripes spanning multiple disks. The maximum volume size for NTFS is 264 bytes.

The cluster is the fundamental unit of allocation in NTFS, which does not recognize
sectors. For example, suppose each sector is 512 bytes and the system is configured with two
sectors per cluster (one cluster = 1K bytes). If a user creates a file of 1600 bytes, two clusters are
allocated to the file. Later, if the user updates the file to 3200 bytes, another two clusters are
allocated. The clusters allocated to a file need not be contiguous; it is permissible to fragment a
file on the disk. Currently, the maximum file size supported by NTFS is 232 clusters, which is
equivalent to a maximum of 248 bytes.

The use of clusters for allocation makes NTFS independent of physical sector size. This
enables NTFS to support easily nonstandard disks that do not have a 512-byte sector size, and to
support efficiently very large disks and very large files by using a larger cluster size. The
efficiency comes from the fact that the file system must keep track of each cluster allocated to
each file; with larger clusters, there are fewer items to manage.

Table 12.6 shows the default cluster sizes for NTFS. The defaults depends on the size of
the volume. The cluster size that is used for a particular volume is established by NTFS when the
user requests that a volume be formatted.

NTFS Volume Layout
NTFS uses a remarkably simple but powerful approach to organizing information on a disk

volume. Every element on a volume is a file, and every file consists of a collection of attributes.
Even the data contents of a file is treated as an attribute. With this simple structure, a few
general-purpose functions suffice to organize and manage a file system.

Figure 12.14 shows the layout of an NTFS volume, which consists of four regions. The first
few sectors on any volume are occupied by the partition boot sector (although it is called a
sector, it can be up to 16 sectors long), which contains information about the volume layout and
the file system structures as well as boot startup information and code. This is followed by the
master file table (MFT), which contains information about all of the files and folders
(directories) on this NTFS volume as well as information about available unallocated space. In
essence, the MFT is a list of all contents on this NTFS volume, organized as a set of rows in a
relational database structure.

Following the MFT is a region, typically about 1 Mbyte in length, containing system files.
Among the files in this region are the following:

• MFT2: A mirror of the first three rows of the MFT, used to guarantee access to the MFT in
the case of a single-sector failure

• Log file: A list of transaction steps used for NTFS recoverability
• Cluster bit map: A representation of the volume, showing which clusters are in use
• Attribute definition table: Defines the attribute types supported on this volume and

indicates whether they can be indexed and whether they can be recovered during a system
recovery operation

Master File Table
The heart of the W2K file system is the MFT. The MFT is organized as a table of variable-

length rows, called records. Each row describes a file or a folder on this volume, including the
MFT itself, which is treated as a file. If the contents of a file are small enough, then the entire file
is located in a row of the MFT. Otherwise, the row for that file contains partial information and
the remainder of the file spills over into other available clusters on the volume, with pointers to
those clusters in the MFT row of that file.

Each record in the MFT consists of a set of attributes that serve to define the file (or folder)
characteristics and the file contents. Table 12.7 lists the attributes that may be found in a row,
with the required attributes indicated by shading.

11/16/00

-22
-

Recoverability
NTFS makes it possible to recover the file system to a consistent state following a system crash
or disk failure. The key elements that support recoverability are (Figure 12.15):

• I/O manager: Includes the NTFS driver, which handles the basic open, close, read, write
functions of NTFS. In addition, the software RAID module FTDISK can be configured for
use.

• Log file service: Maintains a log of disk writes. The log file is used to recover an NTFS-
formatted volume in the case of a system failure.

• Cache manager: Responsible for caching file reads and writes to enhance performance.
The cache manager optimizes disk I/O by using the lazy write and lazy commit techniques
described in Section 11.8.

• Virtual memory manager: The NTFS accesses cached files by mapping file references to
virtual memory references and reading and writing virtual memory.

It is important to note that the recovery procedures used by NTFS are designed to recover
file system data, not file contents. Thus, the user should never lose a volume or the directory/file
structure of an application because of a crash. However, user data are not guaranteed by the file
system. Providing full recoverability, including user data, would make for a much more elaborate
and resource-consuming recovery facility.

The essence of the NTFS recovery capability is logging. Each operation that alters a file
system is treated as a transaction. Each suboperation of a transaction that alters important file
system data structures is recorded in a log file before being recorded on the disk volume. Using
the log, a partially completed transaction at the time of a crash can later be redone or undone
when the system recovers.

In general terms, these are the steps taken to ensure recoverability, as described in
[CUST94]:

1. NTFS first calls the log file system to record in the log file in the cache any transactions
that will modify the volume structure.

2. NTFS modifies the volume (in the cache).
3. The cache manager calls the log file system to prompt it to flush the log file to disk.
4. Once the log file updates are safely on disk, the cache manager flushes the volume

changes to disk.

Table 12.6 Windows NTFS Partition and Cluster Sizes

Volume Size Sectors per Cluster Cluster Size

≤ 512 Mbyte 1 512 bytes

512 Mbyte - 1 Gbyte 2 1K

1 Gbyte - 2 Gbyte 4 2K

2 Gbyte - 4 Gbyte 8 4K

4 Gbyte - 8 Gbyte 16 8K

8 Gbyte - 16 Gbyte 32 16K

16 Gbyte - 32 Gbyte 64 32K

> 32 Gbyte 128 64K

Table 12.7 Windows NTFS File and Directory Attribute Types

Attribute Type Description

Standard information Includes access attributes (read-only, read/write, etc.); time
stamps, including when the file was created or last modified;

and how many directories point to the file (link count).

Attribute list A list of attributes that make up the file and the file reference
of the MFT file record in which each attribute is located. Used

when all attributes do not fit into a single MFT file record.

File name A file or directory must have one or more names.

Security descriptor Specifies who owns the file and who can access it.

Data The contents of the file. A file has one default unnamed data
attribute and may have one or more named data attributes.

Index root Used to implement folders.

Index allocation Used to implement folders.

Volume information Includes volume-related information, such as the version and
name of the volume.

Bitmap Provides a map representing records in use on the MFT or
folder.

Note: shaded rows refer to required file attributes; the other attributes are optional.

pa
rt

it
io

n
bo

ot
se

ct
or

M
as

te
r

F
ile

 T
ab

le
F

ile
 A

re
a

F
ig

ur
e

12
.1

4
 N

T
F

S
V

ol
um

e
L

ay
ou

t

Sy
st

em
F

ile
s

L
og

 F
ile

Se
rv

ic
e

N
T

F
S

D
ri

ve
r

I/
O

 M
an

ag
er

F
au

lt
 T

ol
er

an
t

D
ri

ve
r

D
is

k
D

ri
ve

r

C
ac

he
M

an
ag

er

V
ir

tu
al

 M
em

or
y

M
an

ag
er

F
lu

sh
 t

he
lo

g
fi

le
W

ri
te

 t
he

ca
ch

e

L
og

 t
he

 t
ra

ns
ac

ti
on

R
ea

d/
w

ri
te

 a
m

ir
ro

re
d

or
st

ri
pe

d
vo

lu
m

e

R
ea

d/
w

ri
te

th
e

di
sk

F
ig

ur
e

12
.1

5
 W

in
do

w
s

N
T

F
S

C
om

po
ne

nt
s

[C
U

ST
94

]

R
ea

d/
w

ri
te

th
e

fi
le L

oa
d

da
ta

 f
ro

m
di

sk
 in

to
m

em
or

y

A
cc

es
s

th
e

m
ap

pe
d

fi
le

 o
r

fl
us

h
th

e
ca

ch
e

11/16/00

-23
-

13.5 WINDOWS 2000 CLUSTER SERVER

Windows 2000 (W2K) Cluster Server (formerly code named Wolfpack) is a shared-nothing
cluster, in which each disk volume and other resource is owned by a single system at a time.

The W2K Cluster Server design makes use of the following concepts:

• Cluster Service: The collection of software on each node that manages all cluster-specific
activity.

• Resource: An item managed by the cluster service. All resources are objects representing
actual resources in the system, including physical hardware devices such as disk drives and
network cards and logical items such as logical disk volumes, TCP/IP addresses, entire
applications, and databases.

• Online: A resource is said to be online at a node when it is providing service on that
specific node.

• Group: A collection of resources managed as single unit. Usually, a group contains all of
the elements needed to run a specific application and for client systems to connect to the
service provided by that application.

The concept of group is of particular importance. A group combines resources into larger
units that are easily managed, both for failover and load balancing. Operations performed on a
group, such as transferring the group to another node, automatically affect all of the resources in
that group. Resources are implemented as dynamically linked libraries (DLLs) and managed by a
resource monitor. The resource monitor interacts with the cluster service via remote procedure
calls and responds to cluster service commands to configure and move resource groups.

Figure 13.16 depicts the W2K Cluster Server components and their relationships in a single
system of a cluster. The node manager is responsible for maintaining this node's membership in
the cluster. Periodically, it sends heartbeat messages to the node managers on other nodes in the
cluster. In the event that one node manager detects a loss of heartbeat messages from another
cluster node, it broadcasts a message to the entire cluster causing all members to exchange
messages to verify their view of current cluster membership. If a node manager does not
respond, it is removed from the cluster and its active groups are transferred to one or more other
active nodes in the cluster.

The configuration database manager maintains the cluster configuration database. The
database contains information about resources and groups and node ownership of groups. The
database managers on each of the cluster nodes cooperate to maintain a consistent picture of
configuration information. Fault-tolerant transaction software is used to assure that changes in
the overall cluster configuration are performed consistently and correctly.

The resource manager/failover manager makes all decisions regarding resource groups
and initiates appropriate actions such as startup, reset, and failover. When failover is required,
the failover managers on the active node cooperate to negotiate a distribution of resource groups
from the failed system to the remaining active systems. When a system comes back up after a
failure, the failover manager can decide to move some groups back to this system. In particular,
any group may be configured with a preferred owner. If that owner fails and then restarts, the
group is moved back to the node in a rollback operation.

The event processor connects all of the components of the cluster service, handles
common operations, and controls cluster service initialization. The communications manager
manages message exchange with all other nodes of the cluster. The global update manager
provides a service used by other components within the cluster service.

C
lu

st
er

 M
an

ag
em

en
t T

oo
ls

C
lu

st
er

 A
P

I
D

L
L

E
ve

nt
 P

ro
ce

ss
or

R
P

C

R
es

ou
rc

e
M

on
it

or
s

C
om

m
un

ic
at

io
n

M
an

ag
er

R
es

ou
rc

e
M

gr
F

ai
lo

ve
r

M
gr

A
pp

R
es

ou
rc

e
D

L
L

P
hy

si
ca

l
R

es
ou

rc
e

D
L

L

L
og

ic
al

R
es

ou
rc

e
D

L
L

F
ig

ur
e

13
.1

6
 W

in
do

w
s

20
00

 C
lu

st
er

 S
er

ve
r

B
lo

ck
 D

ia
gr

am
 [

SH
O

R
97

]

A
pp

R
es

ou
rc

e
D

L
L

N
od

e
M

an
ag

er

C
lu

st
er

Se
rv

ic
e

R
es

ou
rc

e
M

an
ag

em
en

t
In

te
rf

ac
e

O
th

er
N

od
es

N
on

-a
w

ar
e

A
pp

C
lu

st
er

-a
w

ar
e

A
pp

D
at

ab
as

e
M

an
ag

er

G
lo

ba
l U

pd
at

e
M

an
ag

er

11/16/00

-24
-

15.6 WINDOWS 2000 SECURITY

A good example of the access control concepts we have been discussing is the Windows 2000
(W2K) access control facility, which exploits object-oriented concepts to provide a powerful and
flexible access control capability.

W2K provides a uniform access control facility that applies to processes, threads, files,
semaphores, windows, and other objects. Access control is governed by two entities: an access
token associated with each process and a security descriptor associated with each object for
which interprocess access is possible.

Access Control Scheme
When a user logs on to an W2K system, W2K uses a name/password scheme to authenticate the
user. If the logon is accepted, a process is created for the user and an access token is associated
with that process object. The access token, whose details are described later, include a security
ID (SID), which is the identifier by which this user is known to the system for purposes of
security. When any additional processes are spawned by the initial user process, the new process
object inherits the same access token.

The access token serves two purposes:

1. It keeps all necessary security information together to speed access validation. When any
process associated with a user attempts access, the security subsystem can make use of
the token associated with that process to determine the user's access privileges.

2. It allows each process to modify its security characteristics in limited ways without
affecting other processes running on behalf of the user.

The chief significance of the second point has to do with privileges that may be associated
with a user. The access token indicates which privileges a user may have. Generally, the token is
initialized with each of these privileges in a disabled state. Subsequently, if one of the user's
processes needs to perform a privileged operation, the process may enable the appropriate
privilege and attempt access. It would be undesirable to keep all of the security information for a
user in one systemwide place, because in that case enabling a privilege for one process enables it
for all of them.

Associated with each object for which interprocess access is possible is a security
descriptor. The chief component of the security descriptor is an access control list that specifies
access rights for various users and user groups for this object. When a process attempts to access
this object , the SID of the process is matched against the access control list of the object to
determine if access will be allowed.

When an application opens a reference to a securable object, W2K verifies that the object's
security descriptor grants the application's user access. If the check succeeds, W2K caches the
resulting granted access rights.

An important aspect of W2K security is the concept of impersonation, which simplifies the
use of security in a client/server environment. If client and server talk through a RPC connection,
the server can temporarily assume the identity of the client so that it can evaluate a request for
access relative to that client's rights. After the access, the server reverts to its own identity.

Access Token
Figure 15.11a shows the general structure of an access token, which includes the following
parameters:

• Security ID: Identifies a user uniquely across all of the machines on the network. This
generally corresponds to a user's logon name.

11/16/00

-25
-

• Group SIDs: A list of the groups to which this user belongs. A group is simply a set of
user IDs that are identified as a group for purposes of access control. Each group has a
unique group SID. Access to an object can be defined on the basis of group SIDs,
individual SIDs, or a combination.

• Privileges: A list of security-sensitive system services that this user may call. An example
is create token. Another example is the set backup privilege; users with this privilege are
allowed to use a backup tool to back up files that they normally would not be able to read.
Most users will have no privileges.

• Default owner: If this process creates another object, this field specifies who is the owner
of the new object. Generally, the owner of the new process is the same as the owner of the
spawning process. However, a user may specify that the default owner of any processes
spawned by this process is a group SID to which this user belongs.

• Default ACL: This is an initial list of protections applied to the objects that the user
creates. The user may subsequently alter the ACL for any object that it owns or that one of
its groups owns.

Security Descriptors
Figure 15.11b shows the general structure of a security descriptor, which includes the following
parameters:

• Flags: Defines the type and contents of a security descriptor. The flags indicate whether or
not the SACL and DACL are present, whether or not they were placed on the object by a
defaulting mechanism, and whether the pointers in the descriptor use absolute or relative
addressing. Relative descriptors are required for objects that are transmitted over a
network, such as information transmitted in a RPC.

• Owner: The owner of the object can generally perform any action on the security
descriptor. The owner can be an individual or a group SID. The owner has the authority to
change the contents of the DACL.

• System Access Control List (SACL): Specifies what kinds of operations on the object
should generate audit messages. An application must have the corresponding privilege in
its access token to read or write the SACL of any object. This is to prevent unauthorized
applications from reading SACLs (thereby learning what not to do to avoid generating
audits) or writing them (to generate many audits to cause an illicit operation to go
unnoticed).

• Discretionary Access Control List (DACL): Determines which users and groups can
access this object for which operations. It consists of a list of access control entries (ACEs).

When an object is created, the creating process can assign as owner its own SID or any
group SID in its access token. The creating process cannot assign an owner that is not in the
current access token. Subsequently, any process that has been granted the right to change the
owner of an object may do so, but again with the same restriction. The reason for the restriction
is to prevent a user from covering his tracks after attempting some unauthorized action.

Let us look in more detail at the structure of access control lists, because these are at the
heart of the W2K access control facility (Figure 15.11c). Each list consists of an overall header
and a variable number of access control entries. Each entry specifies an individual or group SID
and an access mask that defines the rights to be granted to this SID. When a process attempts to
access an object, the object manager in the W2K executive reads the SID and group SIDs from
the access token and then scans down the object's DACL. If a match is found, that is if an ACE is
found with a SID that matches one of the SIDs from the access token, then the process has the
access rights specified by the access mask in that ACE.

Figure 15.12 shows the contents of the access mask. The least significant 16 bits specify
access rights that apply to a particular type of object. For example, bit 0 for a file object is
File_Read_Data access and bit 0 for an event object is Event_Query_Status access.

11/16/00

-26
-

The most significant 16 bits of the mask contains bits that apply to all types of objects. Five
of these are referred to as standard access types:

• Synchronize: Gives permission to synchronize execution with some event associated with
this object. In particular, this object can be used in a wait function.

• Write_owner: Allows a program to modify the owner of the object. This is useful because
the owner of an object can always change the protection on the object (the owner may not
be denied Write DAC access).

• Write_DAC: Allows the application to modify the DACL and hence the protection on this
object.

• Read_control: Allows the application to query the owner and DACL fields of the security
descriptor of this object.

• Delete: Allows the application to delete this object.

The high-order half of the access mask also contains the four generic access types. These
bits provide a convenient way to set specific access types in a number of different object types.
For example, suppose an application wishes to create several types of objects and ensure that
users have read access to the objects, even though read has a somewhat different meaning for
each object type. To protect each object of each type without the generic access bits, the
application would have to construct a different ACE for each type of object and be careful to
pass the correct ACE when creating each object. It is more convenient to create a single ACE
that expresses the generic concept allow read, simply apply this ACE to each object that is
created, and have the right thing happen. That is the purpose of the generic access bits, which
are:

• Generic_all: Allow all access
• Generic_execute: Allow execution if executable
• Generic_write: Allow write access
• Generic_read: Allow read only access

The generic bits also affect the standard access types. For example, for a file object, the
Generic_Read bit maps to the standard bits Read_Control and Synchronize and to the object-
specific bits File_Read_Data, File_Read_Attributes, and File_Read_EA. Placing an ACE on a
file object that grants some SID Generic_Read grants those five access rights as if they had been
specified individually in the access mask.

The remaining two bits in the access mask have special meanings. The
Access_System_Security bit allows modifying audit and alarm control for this object. However,
not only must this bit be set in the ACE for a SID, but the access token for the process with that
SID must have the corresponding privilege enabled.

Finally, the Maximum_Allowed bit is not really an access bit, but a bit that modifies W2K's
algorithm for scanning the DACL for this SID. Normally, W2K will scan through the DACL
until it reaches an ACE that specifically grants (bit set) or denies (bit not set) the access
requested by the requesting process or until it reaches the end of the DACL, in which latter case
access is denied. The Maximum_Allowed bit allows the object's owner to define a set of access
rights that is the maximum that will be allowed to a given user. With this in mind, suppose that
an application does not know all of the operations that it is going to be asked to perform on an
object during a session. There are three options for requesting access:

1. Attempt to open the object for all possible accesses. The disadvantage of this approach is
that the access may be denied even though the application may have all of the access
rights actually required for this session.

2. Only open the object when a specific access is requested, and open a new handle to the
object for each different type of request. This is generally the preferred method because it

11/16/00

-27
-

will not unnecessarily deny access, nor will it allow more access than necessary.
However, it imposes additional overhead.

3. Attempt to open the object for as much access as the object will allow this SID. The
advantage is that the user will not be artificially denied access, but the application may
have more access than it needs. This latter situation may mask bugs in the application.

An important feature of W2K security is that applications can make use of the W2K
security framework for user-defined objects. For example, a database server might create it own
security descriptors and attach them to portions of a database. In addition to normal read/write
access constraints, the server could secure database-specific operations, such as scrolling within
a result set or performing a join. It would be the server's responsibility to define the meaning of
special rights and perform access checks. But the checks would occur in a standard context,
using systemwide user/group accounts and audit logs. The extensible security model should
prove useful to implementers of foreign files systems.

A
C

L
 H

ea
de

r
Se

cu
ri

ty
 I

D
 (

SI
D

)

G
ro

up
 S

ID
S

P
ri

vi
le

ge
s

D
ef

au
lt

 O
w

ne
r

D
ef

au
lt

 A
C

L

A
C

L
 H

ea
de

r

F
la

gs

O
w

ne
r

Sy
st

em
 A

cc
es

s
C

on
tr

ol
 L

is
t

D
is

cr
et

io
na

ry
A

cc
es

s
C

on
tr

ol
 L

is
t

A
cc

es
s

M
as

k

SI
D

A
C

E
 H

ea
de

r

A
cc

es
s

M
as

k

SI
D

(c
) A

cc
es

s
co

nt
ro

l l
is

t
(b

)
Se

cu
ri

ty
 d

es
cr

ip
to

r

F
ig

ur
e

15
.1

1
 W

in
do

w
s

20
00

 S
ec

ur
it

y
St

ru
ct

ur
es

(c
) A

cc
es

s
to

ke
n

• • •

D
el

et
e

R
ea

d
C

on
tr

ol
W

ri
te

 D
A

C
W

ri
te

 O
w

ne
r

Sy
nc

hr
on

iz
e

G
en

er
ic

ac
ce

ss
 ty

pe
s

St
an

da
rd

ac
ce

ss
 ty

pe
s

A
cc

es
s

Sy
st

em
 S

ec
ur

ity
M

ax
im

um
 a

llo
w

ed

G
en

er
ic

 A
ll

G
en

er
ic

 E
xe

cu
te

G
en

er
ic

 W
ri

te
G

en
er

ic
 R

ea
d

Sp
ec

if
ic

 a
cc

es
s

ty
pe

s

F
ig

ur
e

15
.1

2
 A

cc
es

s
M

as
k

